Chapter 7

Embodiment abstraction

The architecture presented in Chapter 6 allows us to port services, primitives and tasks
to other platforms with a reasonable effort, however it is not possible to execute the
same task description on two different embodiments and plans cannot be shared without
manually modifying or tuning them.

The aim of the work presented in this chapter is to provide a tool that allows to use
the same task descriptions regardless of the robot used. In this way, it is possible that
a task learned by a robot could be transferred to another robot or that a manually
designed task could be executed by different robots with different embodiments.

In this chapter we present a hardware abstraction mechanism built on top of the ma-
nipulation primitives paradigm presented in Chapter 3 that complements the software
architecture presented in Chapter 6 and allows the same task description to be used
across different hardware platforms. We demonstrate the abstraction mechanism by
executing the same task description on two different robots with different arms and

grippers.

7.1 Introduction

The approach extends the work presented in Chapter 3 by introducing an embodiment
independent abstraction mechanism on top of the manipulation primitives paradigm.
The abstraction offers several advantages. Firstly, complex actions can be described
in terms of simple abstract primitives. Secondly, plans can be shared over different
embodiments because the vocabulary of primitives is shared. Thirdly, manipulation
primitives offer to high-level planners a vocabulary of reliable actions onto which build
manipulation tasks and plans, thus simplifying and robustifying planning. Finally, these
abstract models can be translated to embodiment specific models, constituting of re-
active sensor-based controllers, such that the full capabilities of each platform can be
utilised.

143

CONTACT DRIVEN ROBOTIC MANIPULATION

Task A cyclic, directed, connected and labelled multi-graph where the nodes corre-
spond to manipulation primitives or other tasks and the edges to events.

Plan An instance of a task with the parameters set for a specific execution in a deter-
mined scenario and context.

Manipulation primitive A reactive controller, designed to perform a specific primi-
tive action on a particular embodiment.

Abstract primitive An embodiment independent primitive action that can be trans-
lated to a manipulation primitive. It has required and optional parameters used
to adapt the primitive behaviour to the specific action and will be used during
the translation process.

Events Represent the detection of a specific perceptual or internal condition.

To flesh out the abstract primitives, in Chapter 3 we presented a complete set of reactive
manipulation primitives for an arm manipulator equipped with a wrist force sensor
and a three-fingered hand equipped with tactile sensors. We look into the power of
the embodiment independent abstract primitives in the scenario where two different
platforms with different hardware capabilities are used to complete a manipulation
task using the same abstract description. A primitive based vocabulary is an effective
way of transferring knowledge and plans between embodiments.

7.1.1 Related work

Few studies have addressed the issue of abstracting hardware from action. [Petersson
et al., 1999] presented a somewhat similar framework but to our knowledge that frame-
work has never been demonstrated in practice with multiple embodiments. An earlier
version of the framework presented here appeared in [Laaksonen et al., 2010]. [Ellenberg
et al., 2010] studied how algorithms for humanoid robot walking can be transferred be-
tween embodiments. The RoboEarth project has proposed a web platform for sharing
environment models as well as action “recipes” between multiple robots using Ontology
Web Language (OWL) [Tenorth et al., 2012].

From another perspective, Programming by demonstration (PbD) instead of focusing
on transferring plans between robots, focuses on transferring skills from a human to a
robot. However, the problems that need to be solved by PbD (a.k.a. Imitation Learn-
ing) include the task generalization problem, where the demonstrated task has to be
described using a general representation that can be grounded on a robot. The task
representations used by PbD include symbolic representations, sensorimotor represen-
tations or machine learning tools such as Artificial Neural Networks (ANNs), Radial
Basis Functions (RBFs) or Hidden Markov Models (HMMs) [Billard et al., 2008].

Human action detection and understanding provides tools for abstract action represen-
tation. Regarding the symbolic and semantic representations used in this context, [Yang

144

CHAPTER 7. EMBODIMENT ABSTRACTION

Abstract primitive Parameters Meaning
move target, trajectory, move type Move without object.
transport target, trajectory, move type Move with object.
place target, trajectory, move type Place down object.
push target, trajectory, move type Push object.
grasp preshape, object size Grasp object.
release hand opening Release object.

Table 7.1: Abstract primitives and parameters (optional parameters in italic).

et al., 2015] propose a framework for learning the semantics of manipulation actions
where using a Combinatory Categorical Grammar (CCG) based learning models, the
manipulation plans can be obtained from a video sequence. However, after obtaining
the task definitions, it is still future work to parametrize each atomic action to address
a specific scenario and execute the task on a real robot.

7.2 Embodiment independence through abstraction

For the definition of abstract tasks, the same mechanisms proposed in Chapter 3 can
be used. Tasks are composed of manipulation primitives connected by events. However,
manipulation primitives and events are embodiment specific. For the implementation
of the abstraction mechanism we have defined the concept of abstract primitive: a
semantically meaningful primitive action that can be translated to an embodiment
specific manipulation primitive. Like the manipulation primitives, abstract primitives
are also configurable using parameters. There are required parameters that need to be
specified for the primitive to work and optional parameters that are used to provide
additional information to the underlying controllers.

The set of abstract primitives proposed in this work is shown in Table 7.1. This set
of abstract actions allows moving objects by grasping or pushing them and has been
found to support many common manipulation actions.

When the primitives are translated to an embodiment specific manipulation primitive,
the required parameters which describe constraints need to be fulfilled but the optional
parameters can be ignored if necessary as their purpose is to serve as hints how to
perform the task.

All primitives except grasp and release are related to arm motions. The required pa-
rameters for these primitives define the target pose to move the arm to and the type of
the motion. The motion target can be a single waypoint or a trajectory represented as a
set of waypoints. However, defining a strict trajectory to be followed should be avoided
when not made necessary by the task to allow each embodiment to use its own capa-
bilities in the best possible way. Defining only the end pose is usually sufficient from
the task perspective and leaves the freedom for the embodiment to choose a collision
free path for that particular embodiment.

145

CONTACT DRIVEN ROBOTIC MANIPULATION

Abstract event ~ Meaning

success Primitive successfully completed.
grasp_stable Stable grasp detected.
grasp_lost Grasp loss detected.
timeout Timeout for specified time.
hardware_failure Hardware failure detected.
error Generic error.

Table 7.2: Abstract events.

In addition to the motion target, the type of motion is specified. Supported motion types
include free, guarded, and constrained motions. In free motion, the embodiment is free
to use any path to reach the target. In a guarded motion, the embodiment is required
to use a Cartesian straight line path. In a constrained motion, rotational degrees of
freedom can be constrained to remain the same for the duration of the motion. This
is useful, for example, to transport containers with liquid. The underlying idea in the
required parameters is thus to constrain the effects of a primitive rather than the ways
to achieve them.

The grasp primitive allows to use an optional parameter to choose the grasp preshape
and the object size. Because the parameters are optional, they can be ignored by plat-
forms which do not support a particular grasp type. In that case, the primitive is likely
to be translated to the closest possible grasp available.

To allow the embodiment independent description of tasks, the state transitions need
also to be described in an abstract fashion. This is done using abstract events shown in
Table 7.2. The events are related to completing a primitive successfully (success), grasp
stability (grasp_stable, grasp_lost), and failure conditions (timeout, hardware_failure, er-
ror). Each platform is again free to use the available sensor set in any possible way to
detect these events.

It should be noted that the primitives and events at the abstract level are not coupled
to any particular embodiment. An important note here is that the sets of abstract
primitives and events need to be rich enough in order to allow wide use of sensors in
the embodiment specific controllers, while at the same time it is important to keep the
semantic meanings of the abstract entities clear to allow the mapping between abstract
and platform specific sensor events and manipulation primitives.

7.2.1 Abstract Task Description

The abstract task description (ATD) is a hardware independent description of a ma-
nipulation task. As in Chapter 3, tasks are defined as cyclic, directed, connected and
labelled multi-graphs where the nodes correspond to abstract primitives or abstract
tasks and the edges to abstract events. The definitions of task, plan, event and ma-
nipulation primitives are detailed in Sec. 3.2. XML (eXtensible Markup Language) is
used to describe the relevant information, such as the abstract primitives and the tran-

146

CHAPTER 7. EMBODIMENT ABSTRACTION

Move
preshape hand

Move

Move
lift object

Grasp

approach grasp object

Figure 7.1: An example abstract task definition, describing a simple grasp and lift
manipulation task. Some of the elements have been left out for brevity, e.g. properties
of the object and some of the common edges, e.g. timeout to the failure state.

<statemachine>
<state name="approach” type="move’>
<movement>free</movement>

<transition origin="approach”
destination="preshape_hand”>

<hand_shape>open</hand_shape>

</state>

<state name="preshape_hand” type="move”>
<movement>guarded</movement>
<hand_shape>pinch_grasp_preshape</hand_shape>

</state>

<state name="grasp_-object” type="
<movement>guarded</movement>
<hand_shape>pinch_grasp</hand_shape>

grasp”>

<success />

</transition>

<transition origin="preshape_hand?”
destination="grasp_object”>
<success />

</transition>

<transition origin="grasp_object?”
destination="1ift _object”>
<success />

<grasp-stable />

</transition>

<transition origin="lift_object?”
destination="fail_end”>

</state>
<state name="lift_object” type="transport”’>
<movement>guarded</movement>

<hand_shape>pinch_grasp</hand_shape> <grasp-lost />

<path> c s
<position>0.2 0.6 0.25</position> </transition> o
</path> <transition origin="1lift_object
p destination="success_end”>
</state>
" i W o <success />
<state name="success_end type="success”>
<grasp-stable />
</state> A
» : 5 » : 5 </transition>
<state name="fail_end type="failure”> </statemachine>
</state>

Figure 7.2: XML definition of the Abstract Task Description shown in Fig. 7.1.

sitions triggered by abstract events. In addition to nodes and edges, information about
the environment such as obstacles and the location, mass and approach direction to
the target object are included in the abstract task description. All the properties and
definitions in XML are hardware independent.

The abstract task is described through definition of nodes and edges. Both nodes and
edges have properties that can be used to further inform of the intended action. The
most important node property is its type, corresponding to one of the primitives intro-
duced above or the special states “success”, or “failure”. The two latter types indicate
end states of a task with either success or failure reported to the higher level controller.
In addition, the parameters of the primitives are specified as node properties. For exam-
ple, the hand preshape for grasping or the target position of the end-effector can be set
through node properties. The edge properties describe the set of abstract events which

147

CONTACT DRIVEN ROBOTIC MANIPULATION

TRANSLATOR
ATD
¢ FACTORY
Configuration ATD State
STATES attributes &
properties >
Primitive
¢ controllers
Abstract task E;%%?;T:ST -
description description TRANSITIONS ATl?otraer:letLon
ESTD transition
with transition
¢ conditions
Primitive controllers Primitive controllers Primitive controllers
and transitions and transitions and transitions ‘
Platform A Platform B Platform C ESTD
(a) Translation process (b) Relationship and communication

of the translator and factory

Figure 7.3: Translation process and components.

trigger the node transition. For example, the loss of a grasp can trigger a transition to
another node.

The attributes are the key factor in selecting the manipulation primitives during the
translation process explained in Sec. 7.2.2. An example abstract task and its XML
definition, describing a simple grasp and lift manipulation, are shown in Figs. 7.1 and
7.2. Some of the elements have been left out for brevity, e.g. properties of the object
and some of the common edges, e.g. timeout to the failure state. It should be noted
that the task description does not need to be a sequence or a tree but it can be any
directed graph, however, the simple form in the example is used to limit the size of the
associated XML code shown.

7.2.2 Translation from ATD to ESTD

The translation process connects the Abstract Task Definition (ATD) and the Em-
bodiment Specific Task Definition (ESTD). The translation takes the abstract task
definition as an input, and translates it into an embodiment specific task definition.
The high-level translation process is depicted in Fig. 7.3(a).

As can be seen in Fig. 7.3(a), the translation component needs input defining the con-
figuration of the translation process, i.e., the target platform and the platform specific
events and manipulation primitives used directly in the embodiment specific task de-
scription. The benefit of this arrangement is that the only hardware dependent blocks

148

CHAPTER 7. EMBODIMENT ABSTRACTION

shown in the figure are the manipulation primitives and events that are platform specific.
The critical requirement of real-time operation for sensor-based control is also fulfilled
as the embodiment specific task can be run as is, without any additional overhead from
maintaining hardware independence.

The translation process requires a mapping component which produces the embodiment
specific task description from the abstract description. In our case the mapping com-
ponent is constructed from two sub-components, shown in Fig. 7.3(b). The first part,
translator, consists of necessary book-keeping and the internal logic that is independent
from the embodiment. The translator also constructs the final ESTD which is used to
execute the desired abstract task. The second part, factory, handles the embodiment
specific construction of the nodes and edges of the ESTD, i.e., the sensor based ma-
nipulation primitives and transition conditions. This division was made to reduce the
implementation time of the factory, which needs to be implemented for each different
embodiment. The relation and the communication between these two sub-components
are shown in Fig. 7.3(b). The factory also receives object and environment information
of the ATD in addition to a particular node or event and its properties. This gives the
factory the complete information needed for the manipulation primitives and events.
The translation process proceeds as shown in Fig. 7.3. First, each of the abstract nodes
is mapped independently by the factory to a suitable embodiment specific manipulation
primitive. Then, the abstract events (transitions) are processed in a similar fashion.

The embodiment specific factory, uses abstract primitive parameters and environment
information to choose a suitable embodiment specific controller and its parameters.
Typically, each type of abstract primitive is mapped to a certain corresponding embod-
iment specific primitive, although it is possible that this relation is not one-to-one or
even static. For example, it is possible to map different abstract arm movement prim-
itives to a single embodiment specific primitive if that primitive can be parametrized
in a suitable fashion, as we show in Table. 7.3. In addition to choosing the type of the
controller, the factory can deliver embodiment specific parameters to the controller.
These can be used, for example, to communicate a collision free path for that particu-
lar embodiment. Thus, in this case, the factory will also act as an embodiment specific
path planner. A similar process is in place for the transition events, that is, the factory
produces computation nodes for sensor processing which use the available sensors of
each embodiment to detect the events.

For free motions in a collision free space and guarded motions, common primitive con-
trollers can be used over several embodiments. This is possible by having common
control and sensor interfaces for the arm, which in our case perform either Cartesian
or joint space velocity control. Thus, we can use manipulation primitives that use the
arm velocity control for all hardware platforms without modifications just by setting
appropriate parameters through the embodiment specific factory. The same applies to

149

CONTACT DRIVEN ROBOTIC MANIPULATION

Abstract Tombatossals Extra parameters Control and sensors used
Grasp Robust grasp Pregrasp size Arm control, F'T and tactile sensors
Move Transport - Arm control
Push Transport - Arm control

Transport Transport Obstacles, constraints Arm control
Place Place Contact threshold Arm control, Force-torque sensor
Slide Slide Slide force threshold Arm control, Force-torque sensor

Release Release Hand position Arm control

Table 7.3: Mapping of abstract primitives to Tombatossals implementation. Extra pa-
rameters show the parameters that are not in the abstract definition given in Table 7.1
but can be specified for the embodiment specific primitive.

the transition conditions, for example a timeout transition condition can be used across
all platforms as the condition relies on measurement of time which should be available
in every platform.

The rules that are observed in the translation process are simple:
e Each node in the ATD must correspond to one node in the ESTD.
e Each edge in the ATD must correspond to one edge in the ESTD.

e Each edge label in the ATD can be represented by one or more edge labels in the
ESTD.

These rules ensure that the execution of the ESTD can be traced back to the original
abstract task description. This allows the system to report back failures to higher level
so that the higher level system operating on the abstract task description is able to
reason using the same concepts. The possibility to represent an abstract transition
condition by more than one embodiment specific ones allows, for example, to check the
success of multiple manipulation primitives, such as separate arm and hand controllers,
with a single success transition condition in the ATD.

While the translator component is universal across all embodiments, the factory com-
ponent needs to be built specifically for each platform. The complexity of the factory
affects the flexibility of the final system. A simple factory with fixed mappings between
abstract and embodiment specific primitives and events is sufficient for many relatively
simple tasks. Complex factories considering for example path planning for redundant
manipulators or the choice of a grasping primitive among several are possible and dis-
cussed more in Sec. 7.4. If the factory is unable to find a suitable mapping for any
reason, the mapping fails which is reported back to the task level. However, it should
be noted that the factory is often fairly simple to implement because there are only
a limited number of abstract primitives, event types and parameters, and the factory
needs to consider only one primitive or event of an abstract task at a time.

150

CHAPTER 7. EMBODIMENT ABSTRACTION

Abstract Melfa Ezxtra parameters Control and sensors
Grasp Grasp grasp force Arm control, tactile sensors
Move Move - Arm control
Push Move - Arm control

Transport Transport Motion constraints Arm control, tactile
Place Transport Motion constraints Arm control, tactile
Slide - - -

Release Release Hand position Arm control

Table 7.4: Primitives for the Melfa platform. Extra parameters show the parameters
that are not in the abstract definition given in Table 7.1 but can be specified for the
embodiment specific primitive.

7.3 Experimental validation

We demonstrate the mapping of the abstract state machine by showing a pick and place
task that needs first clearing the path to the object to be grasped. This is achieved by
developing two simple abstract task descriptions, the first to push an object away (see
Fig. 7.4(a)) to clear the path to perform the second action: a simple pick and place (see
Fig. 7.4(b)).

To enable mapping of the ATD, we implemented the translation component described
in Section 7.2.2 for two different platforms, Tombatossals and a 6-DOF Melfa RV-3SB
arm with a 1-DOF WRT-102 gripper from Weiss Robotics. The WRT-102 gripper is
based on the PG-70 parallel jaw griper from Schunk. The implementation included
the required platform specific controllers for the different nodes in the ATD and the
platform specific transitions, as well as the required configuration information.

While the translation and the different requirements for the primitives are shown for
Tombatossals in Table 7.3, the same information is available for the Melfa platform in
Table 7.4. The Melfa platform does not utilize as much sensor feedback in the primitives
due to the difference in hardware. The primitives for the Melfa platform are, in general,
different from the primitives presented in Chapter 3 for Tombatossals as the SDH
hand integrated into Tombatossals is much more capable in terms of DOF for example.
The effects of the use of different embodiments can be seen, for example, in the grasp
primitive. The Melfa robot is not able to do any of the corrections that Tombatossals
does, it is only possible to perform the force adaptation using the tactile sensors.

For the implementation of the manipulation primitives for the Melfa platform, we used
simple strategies. The basic guidelines used for the implementation are provided in the
following list:

e Grasp: Closes the gripper until the desired grasp force is detected by the tactile
Sensors.

151

CONTACT DRIVEN ROBOTIC MANIPULATION

Move Move
approach move back

(a) Push object abstract task definition.

Grasp
hand opening
grasp type

Move
approach

Release
release object

Transport
transport object

(b) Pick and place abstract task definition.

Figure 7.4: Abstract task definitions tested on Tombatossals and Melfa platforms.

e Move: This is a very similar implementation of the transport primitive described
in Chapter 3 for Tombatossals.

e Transport: Behaves exactly as the move primitive but keeps applying force with
the gripper. Otherwise the transported item would be loosened by the gripper.

e Release: Open the gripper until the fingers reach the hand position parameter.

As a result, shown in Fig. 7.5, we were able to push away one object and grasp the
second one based only on the sensor data from the hand and the arm, when given
estimates of the pose of the objects. Using the same abstract task definitions for both
platforms shows clearly that we are able to use abstraction and then turn this abstract
information to platform specific primitives and transitions used in the sensor-based
control.

In the context of the demonstration we used the same Cartesian controllers for both
arms. On the other hand, the hands are too different in terms of kinematics and sensors
so that each hand had its own implementation of control. Also the transitions for grasp
stability or instability were customized for each of the platforms in order to effectively
use the different sensor capabilities available on the platforms. It should be noted that
the task was nevertheless described using only the abstract description, without any
embodiment specific information.

7.4 Discussion

In the approach presented in this chapter, some of the manipulation primitives imple-
mented in Chapter 3 have been implemented for the Melfa platform. Though all of
them are intended to have the same behaviour and effects, their implementation can

152

CHAPTER 7. EMBODIMENT ABSTRACTION

(a) Approach

Figure 7.5: Action execution on different platforms. Left column: Melfa RV-3SB with
PGT70 gripper. Right column: Tombatossals

153

CONTACT DRIVEN ROBOTIC MANIPULATION

vary significantly due to the mechanic, kinematic, and perceptual differences between
embodiments. Especially in the case of the grasping primitives, the differences in hand
construction (number of fingers, number of joints, number of actuators) and available
sensors are on a level which makes automatic construction of primitives a grand chal-
lenge. In order to better exploit the advantages of each embodiment, it would be possible
to use a more detailed abstract description of the grasping primitive, for example, differ-
entiating between grasp types such as enveloping grasps, power grasps, precision grasps,
or hook grasps. Nevertheless, the state-of-the art in grasping does not currently allow
this level of abstract information to be used automatically and therefore each of the
grasp flavours would need to be adapted manually, depending on the hand character-
istics. This is the case especially if the full reactive capabilities of the embodiment are
to be used.

On the other hand, primitives related primarily to control of arm motions can be gen-
eral so that the same manipulation primitive implementation can be used on multiple
embodiments, as we demonstrated experimentally. However, in order to enable the full
capabilities of an embodiment to be used, the path planning of the arm motions needs
to consider the particular embodiment. This means that the factory component of the
translation process is embodiment dependent, at least to some extent. Nevertheless,
the planning of collision free paths between end-effector poses can be performed using
openly available software libraries and therefore the implementation of the factory is
possible with reasonable effort.

The position of the factory component is central in the approach. Differing capabilities of
different embodiments, for example the size of the workspace, have the effect that there
is no way to guarantee that an abstract plan would be translatable to any embodiment.
Without requiring certain capabilities, it cannot be known with a certainty that a
specific abstract plan can be executed on a specific embodiment. In the longer term,
general principles on how embodiments could automatically instantiate sensor-based
primitives would offer great benefits. However, a complete solution would need to 1)
analyse and abstract a skill performed by an existing system and 2) be able to map the
abstract skill to the present embodiment.

7.5 Conclusion

This chapter presented an abstraction framework allowing multiple embodiments. The
main contribution is the abstraction framework and translation mechanism. We showed
experimentally that the transfer of action plans is possible between different system
setups while retaining the specific reactive capabilities of each embodiment.

These results complement the results from the RoboEarth project, where similar results
have been shown for the higher level planning without the viewpoint of reactive prim-
itives presented in this thesis. The results encourage us to believe that manipulation

154

CHAPTER 7. EMBODIMENT ABSTRACTION

problems can be solved in complex, unstructured scenarios while retaining hardware in-
dependence on a higher level. However, immediate feedback capabilities seem essential
in coping with the complexity of the world.

The embodiment specific manipulation primitives currently require careful design for
each embodiment. Procedures which could automatically at least bootstrap the build-
ing of the controllers, or even construct the controllers, would be very valuable. It seems
that the use of machine learning techniques would be an interesting and possibly prof-
itable avenue of research in this direction. This approach would most likely require high
quality simulations of the embodiment in order to provide training data for the learning
approaches, a possible application of the simulation engines presented in Chapter 5.

The abstraction mechanisms presented, implemented and validated in this chapter were
published in [Laaksonen et al., 2010] and extended in [Felip et al., 2013].

155

