
Chapter 6

System integration

Endowing a humanoid torso with autonomous manipulation abilities involves differ-
ent research topics and requires the integration of many components. All the different
building blocks of the system identified in Chapter 2 and implemented in Chapters 3, 4
and 5 need to work together in a coordinated fashion. Hence, it is necessary to provide
an integration architecture that allows the modules to communicate to each other. It
is also important that the proposed solution supports the paradigm of manipulation
primitives and task descriptions introduced in Chapter 3. Finally, it has to be general,
such that the integration and implementation of other research projects is possible.

A general approach to integrate different components into a system is the use of middle-
wares (e.g. ROS, Yet Another Robot Platform (YARP)). However, using a well known
middleware and implementing the system components as modules, does not satisfy all
the requirements. In big projects with many modules like the one presented in this
thesis, structureless implementation and heterogeneous inputs and outputs results in
chaos. Therefore, to ease the code maintenance and the integration of new modules, an
integration architecture that defines a common structure, concepts, coding style and
documentation is required.

In this chapter we describe the software architecture developed to integrate all the com-
ponents of the contact-based manipulation system, it consists of a modular four layered
architecture with three different data flows. The different layers and data flows are de-
signed to support natively the manipulation primitives paradigm and the definition of
tasks as introduced in Chapter 3.

Moreover, there are several built-in abilities (e.g. inverse kinematics, object detection)
that are supposed to be available by the manipulation primitives, contact perception
or contact prediction. Those abilities are also presented in this chapter. Finally, the
portability of the architecture is addressed and its implementation on another robotic
platform is shown.

123



Contact driven robotic manipulation

6.1 Software architecture

To control all the modules within an integrated platform, we have implemented a lay-
ered system that enables us to interact with the robot at different abstraction levels
(see Fig. 6.1). The core of the architecture is formed by three layers: service, primitive
and task. These core layers communicate with the simulator and the robot hardware
through the interface layer. There are other secondary components such as GUI, robot
models and databases. Each layer is composed by modules that run in parallel and
communicate with each other using three main types of messages. The data messages
are the input/output of the modules. They contain any type of information, raw or pro-
cessed (e.g. joint status, camera image, object positions). The control messages change
the parameters (e.g. threshold, loop rate) and the status (e.g. run, stop) of the modules,
all the modules accept by default the commands run, stop or reset. Finally, the event
messages contain information about a detected situation (e.g. an object is localized or
grasped successfully, motion detected).

ROS is used to handle the messages between the different system parts. ROS is a
middleware that provides a message passing framework among other features. Typically,
a ROS-based system is composed of multiple ROS nodes. A ROS node is a process that
can send and receive data using two different methods: ROS topics for asynchronous n-
to-n data streams and ROS services that provide a request/response 1-to-1 mechanism.

Each module belongs to one of the four layers depending on its purpose and its imple-
mentation. Hardware interfaces and drivers belong to the interface layer. Above them,
modules that perform basic operations such as sensor processing or motor control, be-
long to the service layer. Mid-level modules like manipulation primitives (grasp, push,
etc.) or perceptual primitives (locate object, wait for event, etc.) are classified into the
primitive layer. Primitives can rely on services to accomplish their goals. More complex
modules that require several primitives, services or other tasks to work, are classified
into the task layer (e.g. pick and place). Depending on the layer where a module belongs
to, it must follow specific implementation rules.

6.1.1 Robot and simulator interfaces

The robot interface layer converts the messages back and forth from hardware drivers
to the ROS messages used by our system. Exactly as for the real hardware interface,
we have implemented interfaces for the OpenRAVE/OpenGRASP [León et al., 2010]
simulator and Gazebo [Koenig and Howard, 2004]. The simulator interfaces provide the
same inputs and outputs than the hardware interfaces. This allows the upper levels to
work without knowing whether they are controlling the real or the simulated robot. As
detailed in Chapter 5, the simulator is also used as a prediction engine.

124



Chapter 6. System integration

Figure 6.1: Integration software diagram.

6.1.2 Services

The services are basic processes that receive an input and provide an output. Thus,
services are mostly used to obtain high level information from raw sensor data and to
send control data to the interface layer. The purpose of the service layer is to provide the
building blocks for higher layers. Services are characterized by the following properties:
i) they are continuous non blocking loops that never stop by themselves, ii) they generate
at least one output and require zero or more inputs, but they do not generate control
messages.

6.1.3 Primitives

The primitives define higher level actions or processes. A primitive is a control loop
that gets processed data from services, generates events and sends commands to the
underlying services. They are defined by the following properties: i) They are continuous
non blocking loops that never stop by themselves. ii) They generate at least one output
and can have but do not require inputs. They also generate events towards the task
layer. The role of the primitives is to use and manage services to control the robot
(grasp, move, transport or look at), perceive (recognize or localize objects) and detect
special situations (motion detected, object lost).

6.1.4 Tasks

Tasks represent the highest level of our architecture and use primitives as building
blocks to generate desired behaviours. A task (as defined in Chapter 3) can be described
as a cyclic, directed, connected and labelled multi-graph, where the nodes are primitives

125



Contact driven robotic manipulation

and the arcs are events. An example of a task description that performs active object
tracking with head movements is depicted in Fig. 6.2. It is used in Fig. 6.3 together
with a manipulation task to compose a task that grabs an object while looking at it.
Tasks have the following properties: i) They can end, do not need to be continuous. ii)
They can have multiple inputs and outputs. iii) They generate events.

The role of a task is to coordinate the execution of the primitives, by generating control
messages and changing the data flow between primitives and services. Multiple tasks
can run in parallel and can also be coordinated by other tasks.

Command message Messages sent to the modules to change the configuration pa-
rameters or change their execution status. The default commands for each module
are: run, stop and reset.

Data message Generic message used to send data from one module to another mod-
ule.

Event message Message that is generated by the detection of a specific condition or
event (e.g contact detected, object lost, object detected).

Module generic component of the system. Is composed by a ROS node with defined
inputs and outputs (ROS topics and services). Its constraints and default func-
tionalities depend on the layer it belongs to.

Service basic processes that receive an input and provide an output. Are continuous
non blocking processes that never stop by themselves. Generate at least one output
and require zero or more inputs. Do not generate control messages. (e.g. filters or
joint controllers)

Primitive define higher level actions or processes. A primitive is a control loop that
gets processed data from services, generates events and sends commands to the
service layer (e.g. grasp, transport).

Task represent the highest level modules. They use primitives as building blocks to
generate the desired behaviours. A task (as defined in Chapter 3) can be described
as a cyclic, directed, connected and labelled multi-graph, where the nodes are
primitives and the arcs are events (e.g. clear the table).

6.2 Implementation and task setup

6.2.1 Module implementation tool

The software architecture does not only settle the concepts but also provides a tool
to automatically generate code. It follows the coding style and guides the developer
through the process of creating a new service, primitive or task. A module can be
described by its inputs, outputs, parameters and events. For the creation of a new

126



Chapter 6. System integration

Interface layer

Cameras
Head

controller

V1

Object
Recognition

V2O

Control

Data

Events

Primitive layer

Localize
Object

Move
Head

Service layer

Task layer

Active
Tracking

Figure 6.2: Active tracking task. It consists of two primitives, Localize Object and Move
Head. The former employs two services to extract visual features and localize the target
object. The latter contains a service that calculates the eye movement required to gaze
at the target. Both primitives trigger an event when their state changes.

127



Contact driven robotic manipulation

system module (service, primitive or task), we provide an interpreter that uses the
XML description of the module and creates doxygen friendly code stubs with all the
communication and parameter handling. It also takes care of configuration files, cmake
files and launchfiles. Advantages of the interpreter are: 1) the developers do not have
to waste time creating the code stubs, configuration files and cmake files, which is a
mechanical task that can be automated. 2) All the modules have a similar structure
making the code standard and easily understandable by other developers, the XML
description is human readable and provides detailed module information at a glance.
3) Automatic code generation eliminates the possible errors introduced in those parts
of the code.

6.2.2 Configuration and parameter setting

Each module XML description contains the parameters, inputs and outputs of the
module. The configuration (inputs, outputs and parameters) of each module can be
statically set in a YAML Ain’t Markup Language (YAML) configuration file. Moreover,
the module configuration can also be modified online as the task is being executed using
command messages. To configure a module to use it in an experiment, it is mandatory to
define the connections of its inputs and outputs. Although the modules provide default
values for their parameters, it is important to set up them accordingly to the task.

6.2.3 Task example

A simple task devoted to recognize and actively track an object is depicted in Fig. 6.2.
Assuming that all the modules required are implemented, the configuration files for
each module should be provided. The configuration files contain, for each module, the
parameter values and the input and output connections. For example, the YAML file for
the Object Recognition service contains the input connected to the V1 service, the output
connected to the V2O service and the parameter with the object id. The primitives and
tasks are configured using the same process.

More complex experiments using this architecture have been presented in Chapter 3
where the robot is able to empty a box full of objects and grasp a bottle with one
hand and unscrew its cap with the other hand. Another experiment using a different
robotic platform is detailed in Sec. 6.5 where the task implemented to solve the Amazon
Picking Challenge is presented.

6.3 Implemented modules

A set of services can be connected in series, connecting the output to the next service
input. This kind of configuration, where the raw input is processed by several services,
is called pipeline. Pipelines are used to implement complex processes as a series of

128



Chapter 6. System integration

Localize
object

Move
head

Move
arm

Grasp Lift

Transport Place

Success

Object
localized

Success Success

Success

Success
Release

Success

Active Tracking Task

Pick and Place Task

Figure 6.3: Cooperation among tasks. The robot executes a task which consists of
grasping and moving the target object (pick and place), that requires six primitives.
Meanwhile, the robot actively tracks the moved object.

129



Contact driven robotic manipulation

simple operations. An example of a pipeline is detailed in this section where the visual
processing pipeline and the grasp planning pipeline are outlined.

This section describes the basic modules and pipelines implemented on the robot either
as services or primitives. They are used together with other primitives and services, to
create new tasks.

6.3.1 Joint controller services

The low level control is performed by three services that interface the architecture with
the robot or simulator interfaces. Since each joint can receive different control signals
concurrently from different controllers, the joint state subscriber continuous combines
the control inputs, using a configurable weight, and sends the result to the interfaces
at a fixed frequency of 200Hz. Joint state publisher continuous performs the inverse
task: it gathers the information from different hardware interfaces, combines them and
provides the information of all the joints of the robot in a single message at 200Hz.
Using the robot model and the joint values, the ROS tool robot state publisher provides
the transformation tree for the entire robot using the TF library1. TF is a ROS library
that provides tools for geometric transformations of different data types among different
reference frames. The TF tree is the representation of the reference frames available on
the system, the tree for Tombatossals is depicted in Fig. 6.4.

6.3.2 Arm controllers and planning

The arm control is composed of several services grouped into two pipelines. The inverse
kinematics pipeline converts the end effector target pose, velocity or wrench specified
in the Cartesian space (w.r.t. any known frame), to robot joint velocities. The planning
pipeline converts the target pose into a plan in joint space and executes it.

The inverse kinematics pipeline is composed of two services. First, the Cartesian con-
troller is in charge of converting any target input (position, velocity or wrench) into
a Cartesian velocity command w.r.t. robot base using the TF library (see Fig. 6.4).
Second, the ik solver transforms a Cartesian velocity command w.r.t. robot base into
joint velocities. It is an inverse kinematics iterative solver based on the pseudo inverse
of the Jacobian matrix. The solver is provided by the KDL library [Smits, 2015] and
requires the robot model, the kinematic chain and the controlled frame.

The planning pipeline is a set of services that interface with the MoveIt! [Sucan and
Chitta, 2015] framework. The first service of the pipeline is the ros moveit interface
that converts the input target pose into a MoveIt! message and forwards it to the
planning pipeline. The planning request is then received by the move group service, the
core service of the pipeline. This service uses the robot description, the environment
description and the depth sensor input to obtain a collision free plan from the current

1See http://wiki.ros.org/robot_state_publisher

130



Chapter 6. System integration

Figure 6.4: Visualization of the TF tree for Tombatossals. Top: full robot. Bottom left:
right hand. Bottom right: left hand.

131



Contact driven robotic manipulation

arm pose to the target pose. To obtain the plan, the move group service uses one of
the algorithms available in Open Motion Planning Library (OMPL). The algorithm is
selected and configured through the move group service commands. The result of the
planning process is a trajectory composed of a waypoint list. Each waypoint contains a
target joint configuration of the robot. Finally, the planned trajectory is received and
executed by the robot trajectory service that moves the robot joints from waypoint to
waypoint. While moving, the force and RGBD sensors are monitored to watch out for
unexpected collisions. If a collision is detected the execution is aborted.

The target inputs can be specified on any known reference frame connected to the robot
TF tree. This allows the upper layers to set up a task frame and specify their commands
in the task frame without the need of performing conversions to the robot frame. Using
a task frame is very convenient to specify positions, velocities and forces. It is easier
to specify the rotation of a door knob in the door knob frame than specify the same
rotation on an arbitrary frame not aligned with the door knob rotation axis.

6.3.3 Visual perception pipelines

The visual system of the robot consists of a Kinect sensor and two cameras (more
details about the visual sensors are provided in Appendix A.1). Several services that
exploit common libraries such as PCL [Rusu and Cousins, 2011] or Opencv [Bradski
and Kaehler, 2008] have been implemented to process the visual information.

3D pipeline

The 3D visual pipeline (Fig. 6.5), processes the cue from the RGBD camera and provides
a segmented point cloud for each object in the Region Of Interest (ROI). The first
service of this pipeline is the plane detector. This service detects the principal plane of
the scene using RANSAC. Based on that plane, the ROI is calculated extruding the
bounding box of the points that belong to the principal plane. As the principal plane is
not expected to change fast, this service runs at 1Hz to save computational power. The
ROI filter service receives two inputs: a ROI (defined by 8 vertices) and a point cloud.
Then it filters out the points outside the ROI. Then the self filter service is applied, this
module uses a spherical model of the robot in conjunction with the current robot joint
positions to remove the points in the point cloud that are part of the robot (the spherical
model of the robot is detailed in Appendix B). After this process, the point cloud only
has points that belong to objects in the workspace. Finally, the remaining points are
processed by the cluster extractor service, which performs an euclidean clustering on the
input point cloud and publishes serially each cluster in a separated point cloud. On our
current setup, the pipeline is able to provide the extracted clusters at 30Hz. However,
the computational complexity of the clustering algorithm depends on the number of
points to be processed, we consistently obtained a 30Hz rate but that performance
might decay for larger objects with more points.

132



Chapter 6. System integration

Figure 6.5: The 3D vision pipeline for object segmentation. The point cloud is processed
by the plane detector and the principal plane is obtained. The region of interest (ROI) is
calculated extruding the bounding box of the points that belong to the principal plane
and sent to the ROI filter service. The ROI filter service processes the input point
cloud and applies the ROI obtained from the plane detector. From the resulting points
the self-filter service removes the points that belong to the robot, then a clustering
algorithm detects the objects.

133



Contact driven robotic manipulation

All the features in this pipeline are implemented using the algorithms and filters avail-
able in the PCL library [Rusu and Cousins, 2011]. The pose of the RGBD camera is
known in advance. To calibrate it, an AR marker was attached to a known frame of the
robot and calculated the camera-robot transform. This calibration allows us to add the
RGBD camera frame to the TF tree and the visual system can output the data w.r.t.
robot base if necessary.

6.3.4 Contact perception pipeline

There are several sensors able to detect physical interaction with the environment. Al-
though each sensor can be accessed independently from either services or primitives,
the contact perception services implement a sensor fusion approach combining all the
available sensors to produce contact information which can be used by other services or
primitives. The contact hypothesis fuser service provides the output of the combination
of all the contact hypotheses generated by the other services of the contact percep-
tion pipeline. The details of the fusion process and contact hypothesis generation from
tactile, force, vision, simulation and context are already provided in Chapter 4.

6.3.5 Grasp synthesis pipeline

In this thesis we use sensor-based reactive approaches for the implementation of ma-
nipulation skills, thus the grasp planning algorithms used do not provide exact contact
points but Approach Vectors (AVs). AVs determine the starting position for object
manipulation strategies. There are two implemented methods to generate AVs: the
simple grasp generator based on the perceived object geometry and the openrave grasp
generator based on the object model.

The simple grasp generator implements a method inspired by [Rombokas et al., 2012],
that performs PCA on the object’s segmented point cloud to generate approach vectors
that are parallel to its principal axes. The position is determined by the intersection of
each principal axis and the bounding box of the perceived object geometry.

The openrave grasp generator uses the object model (6D registered or reconstructed)
and the robot model in the OpenRAVE grasp generator to produce the AVs. First, the
surface of the object’s bounding box is uniformly sampled. Second, the intersection of
the object and a ray originating from each sampled point going inward is taken. Finally,
the normal of the object’s surface from each of these intersection points is taken to
be the approaching direction of the end-effector, see Fig. 6.6. More details about the
OpenRAVE AV generator can be found in the OpenRAVE online documentation2.

To select a single approach vector or reduce the search space for the final AVs selection,
the generated AVs can be filtered using different services. The reachability filter service
filters out the AVs that are not reachable by the selected robot arm. The Collision-free

2 http://openrave.org/docs/0.8.2/openravepy/databases.grasping/

134



Chapter 6. System integration

(a) The surface of the bounding
box of the object is uniformly
sampled.

(b) The intersection of the ob-
ject and a ray originating from
each sampled point going in-
ward is taken.

Figure 6.6: Example of the approach vectors generated by the OpenRAVE grasp plan-
ning plugin. Images obtained from the OpenRAVE online documentation.

Figure 6.7: Example of the approach vector pipeline using the simple grasp genera-
tor on a bottle finally constrained to a side grasp. Each generated approach vector is
represented by a CAD model of the hand.

135



Contact driven robotic manipulation

filter service removes the AVs that are in collision with the environment, the object or
the robot itself. The orientation filter service deletes the AVs that are not pointing to a
determined direction ± a threshold. The distance filter service filters out the AVs that
are further than a threshold from a configurable frame. An example of the AVs filtering
process is depicted in Fig. 6.7.

6.3.6 Manipulation primitives

As detailed in Chapter 3, manipulation primitives are single reactive controllers designed
to perform a specific primitive action on a particular embodiment. The primitives are
configurable to adapt their behaviour to a specific task or environment. The primitives
available on the system are briefly described below, a more detailed description with
all the available parameters can be found in Chapter 3.

• Move arm to: can either use the planning or inverse kinematics services to move
the selected arm to the desired position. Monitors the motion and stops if a
collision is detected.

• Robust grasp: performs a reactive sensor-based grasp strategy with the selected
arm and fingers.

• Hold: controls the fingers of the hand to keep the desired force.

• Lift: moves the arm upwards (w.r.t. world) until the desired lift distance is reached.

• Place: moves the arm towards the target supporting surface until contact is de-
tected.

• Release: opens the hand to the desired opening position. Meanwhile zero-force
control is used for a compliant release movement.

• Slide: slides the object over the surface towards the target position controlling the
applied force.

• Push and pull: pushes or pulls an object compliantly for the desired distance or
until the force limit is detected.

• Unscrew: grabs a threaded cap and performs the required twist movements pulling
the cap until it is free for removal. While the cap is being unscrewed, the object
needs to be fixed (e.g. by the other hand).

• Touch: moves the arm forward until a contact is detected.

Beyond manipulation primitives, there are other primitives needed to compose a task.
Those auxiliary primitives can activate or deactivate perception pipelines, change pa-
rameters, introduce delays or wait for key strokes.

136



Chapter 6. System integration

Figure 6.8: Dual arm manipulation of big objects.

6.4 Other research experiments

In addition to the experiments detailed in previous chapters, regarding object manip-
ulation, contact perception, contact prediction and object detection and recognition,
the architecture presented in this chapter was also used to perform other manipulation
experiments. Dual arm control is another of the ongoing research lines that have been
conducted with our robot. As depicted in Fig.6.8, some preliminary results have shown
dual arm coordination abilities for manipulating big objects with both arms.

Besides grasping and manipulation experiments, the head of the robot has also been
used for research experiments about biologically inspired learning. Work about implicit
mapping of the peripersonal space can be found in [Antonelli et al., 2011] and more
results of saccadic adaptation and learning saccade control are available in [Chinellato
et al., 2012,Antonelli et al., 2013,Antonelli et al., 2015].

6.5 Implementation on other embodiments

Theoretically, the implementation of the layered architecture allows the software com-
ponents to be used on different hardware platforms. The only modules that need to
be implemented are the drivers and hardware interfaces. Thus, services, primitives and
tasks can be used independently of the underlying hardware. However, this is not fre-
quently the case, and services, primitives and even tasks are usually platform dependent
and require modifications in order to adapt to other platforms. Although it is possible
to implement services and primitives in a hardware agnostic manner, each platform has
its specific features and not exploiting them would cripple the capabilities of the robot.

137



Contact driven robotic manipulation

�������

�����������
���������

�������������

���������
������
���������

������
��������
��������������
���������

�����������������

Figure 6.9: Exploration task definition for the APC. Parameters required by each prim-
itive are written in italics. The target bin is switched by the task each time the Grasp
Planning primitive finishes and before the Move to bin primitive is activated again.

All the modules presented in this chapter were implemented for Tomabtossals. More-
over, the four building blocks presented through this thesis to build a complete contact-
based manipulation system were mainly implemented for the same platform. In order
to participate in the APC (Amazon Picking Challenge), some of the modules developed
for Tombatossals had to be ported to Baxter (see a detailed description of the robot
in Appendix A.4), which was the robotic platform to be used during the competition.
The aim of the challenge is to pick all the objects in an order list from a shelf and place
them into a bin next to the robot. The robot is given a file with the target objects and
it has to autonomously search, pick and place them into the bin.

To solve the APC task, we divided the problem into two sub-tasks: exploration and
manipulation. The former uses the Kinect attached to the robot forearm to explore the
shelf, look for the target objects and generate an approach vector to grasp each target
object (see Fig. 6.11). The latter uses the list of plans generated by the exploration
subtask to sequentially grasp the target objects and place them in the bin. Both subtasks
are described using the manipulation primitives paradigm and depicted in Fig 6.9 and
Fig 6.10.

The modularity and structure introduced by the software architecture made the adapta-
tion of the services and primitives easier. On the other hand, the task, some primitives
and services were implemented ad-hoc for the challenge. The visual and grasp plan-
ning process is depicted in Fig. 6.11, where the segmentation, clustering, recognition
and grasp planning steps are depicted. Finally, Fig. 6.12 shows a picture of the robot
grasping an object from the APC shelf and the result of the visual and grasp planning
pipelines.

138



Chapter 6. System integration

�������
��������������

������

�����
����������

����
������

������������������������

��������

���������
����������

�����
���������������

�������
������������

�������
�������������

������������

�����

Figure 6.10: Manipulation task definition for the APC. Parameters required by each
primitive are written in italics. Each primitive is configured before activating it. The
approach vector and grasp type are obtained from the list of plans, the other parameters
are defined in a configuration file and do not depend on the plan or the bin.

Figure 6.11: Grasp planning process for the APC challenge. Left: Initial image with bin
reference frame. Middle: object segmentation, clustering and recognition. Right: grasp
planning.

139



Contact driven robotic manipulation

Approach Pose

Camera Frame

Region of Interest

Cluster Bounding Box
Object point cloud

Figure 6.12: Left: Result of the visual and planning pipelines after the exploration of
a bin of the APC shelf, the approach vector is represented by a CAD model of the
gripper. Right: Execution of a manipulation task on a target object inside a bin of the
APC shelf.

6.6 Conclusion

In this chapter, we have presented the layered software architecture used to integrate
the proposed building blocks of the complete contact-based manipulation system.

Aside of the human inspired components identified in Chapter 2, there are other under-
lying abilities that are important and necessary for autonomous robotic manipulation,
such as path planning, motor control, object perception or kinematic chain solvers. In
this chapter we have also shown the basic skills that enable us to build more complex
abilities on top of them. The work presented in this chapter, does not only include the
architecture concepts and the implementation of some basic abilities. It also provides a
tool to automatically generate code stubs for new modules, easing the creation of mod-
ules, increasing the readability of the generated code and saving a lot of programming
and configuration time.

However, there are several drawbacks that need to be addressed in future versions of
the architecture. Regarding message synchronization, when using a pipeline, it is not
possible to determine which input generated which output. This is very important for
example for learning algorithms. The design of pipelines, uses streaming data from a
source and processes each message. Synchronization tools that allow the user to tag
messages or to know exactly which message originated which output are an idea to

140



Chapter 6. System integration

solve this issue. Other solutions such as a list of timestamps or synchronous pipelines
are possible ideas that could solve this issue as well.

The process to set up a new experiment is complex and time consuming. First, all
the involved modules have to be identified. Second, the configuration files for each of
the modules has to be completed and the module to module connections have to be
detailed. A graphical tool would be very useful in order to automatically generate the
configuration files that properly connect modules to each other. Such a tool could rely
on task specifications similar to the ones used in this thesis to generate the required
task description and configuration files. That would complete the layered architecture
allowing us to program at any abstraction layer, from low level drivers to high level
graphical programming like Aldebaran’s choregraphe3 or Scratch4.

Shared resources management is another important issue that has to be addressed. It
is possible that different primitives use the same services or that two services use the
same hardware interface. In the current version of the architecture, the developer has
to be aware of this issue when setting up a new task. However, tasks will eventually
become more and more complex and it will be very difficult to handle the shared
resources manually. Thus, a mechanism to handle this issue has to be provided. A
possible solution can be a warning system that automatically checks the modules used
by the top level task.

The software architecture presented in this chapter was published together with the
Tombatossals description in [Felip et al., 2015]. Moreover, the architecture and some
of the abilities presented, were used by the RobInLab team during their participation
in the 2015 Amazon Picking Challenge. Without the structure and organization of the
architecture it would have been impossible to migrate all the important skills from
Tombatossals to Baxter in only 4 months and be able to obtain good results at the lab
and participate in the competition.

3Choregraphe: www.aldebaran.com/en/robotics-solutions/robot-software/development
4Scratch programming language: scratch.mit.edu

141




