Chapter 4

Contact event perception

Neuroscience studies presented in Chapter 2, point out that human grasping is driven
by the creation and breaking of contacts with the environment. Perception of contact
events is performed by humans using multiple sensor cues: visual, tactile, proprioceptive
and audio to name a few. Moreover, the prediction of contacts is also an important
source of information for error detection and recovery while performing manipulation
tasks.

Regarding robots, perception of physical interaction can also be achieved using many
sensor modalities: tactile, force-torque, proprioception, accelerometers; even sonar, laser
and vision could be used as well. Is a problem in robotics to fuse all the available data
to provide the robot with enhanced perception capabilities. Sensor fusion has not been
applied so far on contact localization for manipulation.

In this chapter, a sensor fusion framework for contact detection and localization is
proposed. It is able to use any knowledge available to detect and localize contacts and
improve the robustness and precision of the detected contacts. The presented approach
allows the integration of multiple sensors, environment, context and predictions. On
top of it, we have implemented a contact event detector that will provide the necessary
contact events required by the task description to trigger transitions between states, as
shown in Chapter 3.

The framework is divided in three main parts: contact hypotheses generation, hypothe-
ses fusion and contact condensation. Firstly, the contact space and the other basic
concepts for the contact hypothesis framework are presented. Secondly, the guidelines
for the integration of sensors into the contact space, together with some examples of im-
plementation are shown. Thirdly, the fusion algorithm to combine the different sensory
cues and how to perform contact detection and localization from the fusion result is
shown. Finally, the approach is validated through several experiments on Tombatossals
and a simple use case of a contact driven controller on ARMAR-IIIb. For a detailed
description of the robotic platforms used see Appendix A.1 and A.2.

69



CONTACT DRIVEN ROBOTIC MANIPULATION

4.1 Related work

In the last decade, contact sensing has become a key element on all the robots with
manipulation capabilities. Besides tactile sensors, there are other devices that can mea-
sure physical interaction, such as force-torque sensors or joint-torque sensors. Moreover,
there are other sensor modalities that can be used like vision or audio [Lacheze et al.,
2009]. Unfortunately, each data source has its own representation and the information
from different sensors cannot be easily compared with that from other sources. In ad-
dition, information about the environment can also be very useful to constrain where
physical interaction can occur.

Data fusion from different sources has been a largely studied problem in robotics. In the
early 90’s the theoretical basis of the current techniques were already settled [Hackett
and Shah, 1990]. More recently, the evolution of parallel computation enabled the use
of high computational cost probabilistic approaches (e.g. particle filters) [Thrun et al.,
2005]. On real scenarios fusion is often performed with a defined goal: fusion of audio and
visual input to track a talking person [Fermin et al., 2000], to track an object [Meeussen
et al., 2006] or to recognize it [Lacheze et al., 2009]. [Prats et al., 2013] developed
a framework that presents sensor fusion for robotic manipulation, where each sensor
handles a controller that contributes to the resultant control applied to the robot. In
this chapter, instead of focusing on control, we provide a common representation for
contact detection and localization.

Using vision and force, [Ishikawa et al., 1996] proposed a method to detect contacts
between a known grasped object and the environment. In that work the fusion method
is task specific and the contact detection method is embodiment specific. Other works
that perform contact localization, either use only one sensor modality [Meier et al.,
2011] or process and fuse the data with an ad-hoc non scalable method. [Hebert et al.,
2011] presented a probabilistic sensor fusion method to estimate the pose of a grasped
object, although they obtained a very good precision (5mm) contacts were considered
only on the fingertips.

4.2 Contact hypothesis framework

The sensor fusion framework is composed of two independent parts; the contact hy-
potheses generators and the integrator (Fig. 4.1). Each generator creates contact hy-
potheses based on a defined criteria (e.g. force sensor, simulator) and sends them to
the integrator. The integrator receives those hypotheses, combines them and uses the
result to determine the likelihood of a contact at a location.
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Figure 4.1: System overview. Contact hypotheses generators obtain data from sensors,
simulation, kinecmatics, control and environment to produce contact hypotheses that
are sent to the integrator. The integrator performs the fusion and contact detection and
outputs the resulting contacts.

Contact hypothesis Represents the likelihood that a contact happened at a specified
location.

Contact hypotheses integrator Updates the hypotheses space fusing the input
clouds of hypotheses from the contact hypotheses generators and provides as a
result the estimated contacts.

Contact hypotheses generators Use an information source (context, simulator, sen-
sors) to produce a cloud of contact hypotheses.

Hypothesis space Is a 3D Cartesian space discretized in voxels of a fixed size. The
state of the HS is determined by the occupied voxels and the likelihood of each
one.

4.2.1 Contact hypothesis and hypothesis space

A contact hypothesis represents the likelihood that a contact happened at a specified
location. The hypothesis space HS is a 3D Cartesian space discretized in voxels of a
fixed size. The state of the HS is determined by the occupied voxels and the likelihood
of each one. The state of the HS is updated by the integrator.

The integrator receives sets of contact hypotheses h, from the generators (g1, ..., gn)
that represent the probability p that a contact ¢ happened at a specified voxel z € R3.
Thus, the set of hypotheses generated by g, is h,(x) = p(c|z, g,) (see Fig. 4.1).

71



CONTACT DRIVEN ROBOTIC MANIPULATION

After performing the hypotheses fusion, the output of the integrator is a set of contact
hypotheses H representing the probability that a contact happened at a specified voxel
combining all the received inputs H(z) = p(c|z, g1, ..., Gn)-

A contact hypothesis must have information about its location and likelihood. Beyond
the required information, in the proposed framework, a contact hypothesis is composed
by the following elements (required fields are bold):

e Location: Specifies the 3D position of the hypothesis.

e Likelihood: List of likelihoods of each source that contributed to this hypothesis.
e Timestamp: List of timestamps when each likelihood was generated.

e Force magnitude.

e Force direction.

e Type: Can take one of this values: Regular, Support or Null.

e Source id: List of sources that contributed to this hypothesis.

Contact hypotheses types

It is possible to implement generators that are not based on physical evidence of contacts
(e.g. predictions). To avoid detecting contacts without having physical evidence, contact
hypotheses are labelled with a type that will be used by the integrator to determine
how to proceed for the hypotheses fusion. The possible types are: regular, support and
null.

Regular hypotheses
Regular hypotheses are those produced by real sensors from perceptual evidence.
Support hypotheses

Support hypotheses are those produced by generators that do not have perceptual evi-
dence of a contact. Support hypotheses are used to add contextual data or predictions
to the estimation of the contact locations. Therefore if the sensors detect a real contact
and generate hypotheses, those hypotheses that fuse with support hypotheses will in-
crease their likelihood. On the other hand, support hypotheses that are not fused with
any other hypothesis from perceptual evidence will be discarded.

Null hypotheses

Null hypotheses represent the locations of the contact space where there are no con-
tacts. There are cases, where there is relevant information about where contacts cannot
happen, this data can be reflected in the contact detection framework generating null
hypotheses on the locations where contacts cannot happen. Null hypotheses are used
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to draw a null space for the contact detection. Any hypothesis that fuses with a null
hypothesis will be discarded.

4.3 Hypotheses generators

The role of a contact hypotheses generator is to convert any suitable information avail-
able to the robotic system (context, simulator, sensors) in a cloud of contact hypotheses
that will be added by the integrator to the contact space. In Section 4.4 the implementa-
tion details of the contact hypotheses generators used in our system are provided. This
section gives the guidelines for the implementation of contact hypotheses generators
based on sensors and other information sources.

A contact hypotheses generator uses the data from a sensor, a controller, a simulator
or any other source that provides information about a perceived or a predicted contact
located in the space. The output is a cloud of contact hypotheses (that determine the
possible contact locations), the likelihood of each generated contact hypothesis and its

type.
4.3.1 Implementation guidelines

For the implementation of a new generator, the first step is to determine whether the
generator can detect one or more contacts at a time. On the one hand, single-contact
generators can only detect one contact at a time (e.g. bumpers or force sensors). On the
other hand, multi-contact generators are able to detect multiple contacts simultaneously
(e.g. tactile sensor arrays, simulation engines).

For single-contact hypothesis generators, the probability of the detected contact has to
be distributed among the generated contact hypotheses, see Eq.(4.1). The likelihood can
be distributed uniformly or with any other distribution, depending on the nature of the
data used. For multi-contact hypothesis generators, we will allow the sum of likelihoods
to be equal or greater than one, see Eq.(4.2), because more than one contact can be
detected at a time.

7

Zp(cyxiagsingle> =1 (4.1)

Zp(c‘xhgmulti) >1 (4.2)

The second step is to calculate the likelihood of each generated contact hypotheses. To
do so, the nature of the data that the generator uses has to be identified. Although
there may be more types, in this thesis the following types were identified:
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e Binary: (contact / no contact) it gives no clue about the contact distribution, in
that case a fixed value for all the hypotheses is used. The constant value can be
determined by the sensor model or experimentally probing the sensor and deter-
mining the likelihood of a contact to be detected. A bumper or a deterministic
simulator are examples of binary data sources that can provide information about
the existence of a contact but not a related value. See implementation examples
in Sec. 4.4.3 and Sec. 4.4.5.

p(c|x, Gpinary) = constant (4.3)

e Value: If the value of the input data is directly related to the contact likelihood.
The final probability for each hypothesis can be calculated using Eq.(4.4) where
argmazx(data) is used for normalization and represents the maximum value of the
current reading only if argmax(data) > 0. This approach assumes that the sensor
does not provide false positive readings, otherwise if the sensor output is different
from zero when there is no contact (e.g. due to noise or hysteresis effects) those
values will be considered with high likelihood, in this cases the sensor input has
to be previously filtered. An example of this kind of data are tactile or pressure
sensors, in those cases the higher the value the more likely that there is a contact
on the location where the sensor is at. An implementation example is provided in

Sec. 4.4.2.
data,

argmazx(data)

(4.4)

p(C|fL’, gvalue) =

e Distance: If the data used to generate hypotheses is a distance (e.g. from the
sensor to an object). An inverse square law like Eq.(4.5) can be used to determine
the likelihood of each hypothesis. Where A determines the distance at which the
likelihood will be 0.5, this has to be tuned depending on the precision of the sensor
and its calibration. An implementation example is provided in Sec. 4.4.4.

)\2
T2 + distance?

p(C|l’7 gdistance) (45)

Finally, the last step is to determine where in the contact space the hypotheses will be
generated. If the location of the hypotheses can not be determined by the data used
to generate the hypotheses, other information available can be used for that purpose
such as the sensor’s geometry and location, robot geometry, joint configuration, sensor
sensitive area, etc.

For example a bumper based contact hypothesis generator, would be single-contact and
will use the sensor geometry to place the contact hypotheses on. On the other hand,
a LiDAR combined with the robot geometry would be multi-contact, use the robot
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geometry close to the range data to place the hypotheses and use the distance between
the range data and the robot model as the likelihood of each contact hypothesis. Some
more examples are given in Section 4.4 where the implemented hypotheses generators
for our perceptual system are detailed.

Summarizing, to implement a new contact hypotheses generator: first, the location
where the hypotheses will be generated has to be determined. Second, the type of the
generator (single-contact or multi-contact) has to be specified. Finally, the type of data
and the law for the generation of each hypothesis likelihood has to be selected.

4.4 Implemented regular hypotheses generators

In this section, we show the implementation of several contact hypotheses generators
based on sensors that are often available in robotic manipulators.

The sensors embedded on nowadays robots, are usually platform dependent and require
a specific processing depending on each embodiment. In this chapter we have only
proposed the implementation of platform dependent hypotheses generators. However,
the guidelines for the implementation of other types of contact hypotheses generators
are given in Section 4.3. On the other hand, the implementation of the integrator is
platform agnostic.

4.4.1 Experimental platforms

We have implemented contact hypotheses generators for two robotic platforms, Tombat-
ossals and ARMAR-IIIb.

Tombatossals, is a humanoid torso with 29 DOF with advanced sensing capabilites
such as tactile sensors, force-torque sensors, cameras, and a kinect, detailed information
about this robot is provided in Appendix A.1. ARMAR-IIIb is a humanoid robot with
33 actuated DOFs. For the experiment we have only used its right arm (7DOF) and
hand (7DOF). It has a force-torque sensor on the wrist and tactile sensor pads on the
palm and fingertips. More details about this robot can be found in Apendix A.2.

4.4.2 Tactile sensor hypotheses generator

One of the main sensory cues that can provide information about contacts between the
robot and the environment are tactile sensors. This kind of sensors typically produce an
array of pressure values with measurements from a grid of sensing cells. In combination
with the joint positions and the robot model it is possible to determine the spatial
location of contacts.

If there are multiple contacts at a time, tactile sensors are able to detect them and
provide sensor readings accordingly, hence this will be a multi-contact generator. In this
kind of sensors, a single contact may generate marginal readings in the nearby taxels
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Figure 4.2: Example of the hypotheses generated by the tactile sensor generator. Left:
Real scenario. Center: Tactile sensor readings. Right: Green voxels show generated
hypotheses and red sphere the result of contact localization.

(see Fig. 4.2 center). However, the contact point will have a higher pressure value, thus
we consider that the taxel pressure value is related with the contact likelihood at that
taxel.

The hypotheses location x is determined by the activated taxels of the sensor, see
Fig.4.2. The likelihood of a hypotheses located at a voxel x and with a tactile value of
z, is calculated using the following equation:

Zx

plelz,z) = (4.6)

argmax(z)

The tactile hypotheses generator was implemented both for ARMAR-IIIb and Tombat-
ossals.

4.4.3 Force-torque hypotheses generator

Nowadays, service robotics oriented manipulators, often provide the external forces and
torques applied to their end effectors. A straightforward solution to provide informa-
tion about contacts is to use the force-torque readings. That data can be obtained
from a force-torque sensor or computed using the joint efforts and the robot dynamic
model. This sensory data is very valuable for contact detection because it can provide
information about physical interaction.

In this subsection we present an implementation of a contact hypothesis generator based
on the force-torque data detected at the end effector.

As explained in Sec. 4.3, the first step to implement a new hypotheses generator is to
determine its type. It is not possible to determine the location of multiple contacts with
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Figure 4.3: Left: A force F' is applied to the finger of the robot, that force could be
applied by an external actor or be a reaction to the robot interaction with the environ-
ment. The sensed force is decomposed in f,, f, and f. by the force sensor. Right: The
perceived torque 7 depends on the distance vector d where the force F' is applied from.
Each component of the vector 7 can be obtained from the sum of the two tangential
forces.

a F/T sensor. Hence, this is a single-contact hypothesis generator because it can only
detect one contact at a time.

Regarding the data obtained from the sensor, the values provided give no informa-
tion about the contact likelihood, thus the likelihood of the detected contact will be
uniformly distributed among all the generated hypotheses to satisfy Eq. (4.1).

In order to determine the location where the contact hypotheses will be generated,
we have to take a look on how the force-torque sensor works. These type of sensors
produce a 3D force vector f € R?® and a 3D torque vector 7 € R3. The perceived
torque 7 depends on the distance vector d € R? where the force F is applied from (see
Fig. 4.3 right). Each component of the vector 7 can be obtained from the sum of the
two tangential forces that act on that component, see Eq.(4.7).

3= f11-dia+ fla-dia (4.7)

Applying Eq.(4.7) for each of the axes, we obtain the system of equations shown in
Eq.(4.8).

Tz:fz'dy_fy'dz
Ty = fo-d, — f.-d, w.r.t. sensor frame (4.8)
Tz:fy'dz_fm'dy
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Solving the linear equation system with 3 equations and 3 unknowns shown in Eq.(4.8),
will provide the contact point (d = [d,d,d.]). Unfortunately, the equations are linearly
dependent and the system has no single solution. However, the result of intersecting
the three equations is a line that can be used to generate contact hypotheses.

In order to generate a set of possible solutions, we will use only two of those equations
at a time (see Eq.(4.9)) and solve the leftmost group for a set of possible values for
d, (if f, # 0), the center group for d, (if f, # 0) and the rightmost group for d, (if
f= # 0). To select the set of values used for d,, d, and d,, the bounding box of the
hand is expanded and used to limit the sampling space. After this, we have three lines
of contact hypotheses, see Fig.4.4 center. The resulting lines are theoretically equal but
experimental validation has shown that the resulting lines are not always equal, it might
be due to sensor noise and may depend on the nature of the sensor.

_ fyda—T2 — T+ fa-dy _ fazrda—Ty
v e b (4.9)
d

_ Tyt fade fordy—Tz _ Tatfyd:
d, = fa z fy dy - f=

Finally, using the distance of the generated hypotheses to the spherical model of the
robot (details about the robot spherical model are presented in Appendix B), those
hypotheses that are not close to the robot geometry will be filtered out (See Fig.4.4
right). The likelihood of the detected contact will be uniformly distributed among all the
generated hypotheses, therefore the likelihood of a hypothesis will be p(c|z, gs) = 1/n
where n is the number of generated hypotheses.

Another approach to determine the contact point regardless of end effector geometry

is shown in [Karayiannidis et al., 2014]. The Force-torque hypotheses generator was
implemented both for ARMAR-IIIb and Tombatossals.

4.4.4 Range sensor hypotheses generator

Tactile sensing technologies, provide accurate data about contacts and are very sensi-
tive. However, it is not possible to cover the whole robot hand with tactile sensors and
usually there is a lot of surface that cannot sense contacts using this modality. That
gap is covered by force-torque sensors which can sense contacts occurring at any point
of the end effector. Unfortunately, their sensitivity is not good enough to detect con-
tacts with light objects like an empty cardboard box. As a consequence, even in heavily
sensorized systems, it is common that a contact goes unnoticed which jeopardizes the
performance of a contact-based manipulation system.

This subsection proposes a contact hypotheses generator based on range data provided
by an RGBD active camera. This generator can be used to fill in the gap left by
tactile and force-torque sensors regarding light objects and improve contact detection
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Figure 4.4: Example of the hypotheses generated by the force-torque generator. Left:
Real contact. Center: Generated hypotheses before hand geometry filtering. Right: Gen-
erated hypotheses.

and localization on those situations. However, the implementation of a method able to
detect contacts using an RGBD camera, is not as straightforward as using a sensor that
directly measures physical interaction.

One of the problems to address is that contacts can occur on non visible parts of
the object, or most likely be occluded by the robot itself. To deal with the occlusion
problem, this contact hypotheses generator utilizes an Occupancy Grid Map (OGM) in
order to determine where collisions can happen (Fig. 4.5).

The steps performed by the range sensor hypotheses generator are depicted in Fig. 4.6.
1) Before the manipulation task starts, the OGM of the scene is initialized. 2) While
the robot moves to manipulate the object, the OGM is updated using the robot spher-
ical model and the space traversed by the robot is removed from the possible contact
locations. At the same time, the object is tracked to detect its movement. 3) Once
object motion is detected, the contact location is estimated using the combination of
the OGM and the spherical model of the robot (details about the robot spherical model
are presented in Appendix B).

The generator assumes that if the manipulated object moves, the motion is caused by
the physical interaction of the robot, no external agents are acting on the environment.

OGM initialization

The OGM is initialized by projecting each point of the initial object point cloud along
the direction of the camera until it intersects with the table plane. To project the points,
a perfect pin-hole model of the camera is considered. The initial object point cloud is
obtained before any manipulation action is taken. To detect the table and segment out
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Figure 4.6: Range hypotheses generator diagram. After initializing the OGM, the al-
gorithm keeps updating the OGM until object motion is detected. Then the contact
hypotheses are generated.
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the object, the same visual pipeline used in the experiments presented in Chapter 3 is
used. The details of the visual pipeline are given in Section 6.3.3.

Then, the occluded area is discretized in voxels of 1mm? in each direction (x,y, z). The
voxels that are already present in the point cloud provided by the RGBD sensor, have
a probability of being occupied P(c¢;) = 1. Meanwhile, there is no information about
the voxels that are not being seen, hence its starting likelihood of being occupied is
P(c;) = 0.5. The initial state of the OGM is depicted in Fig. 4.5 where the green voxels
correspond to occluded space and the color voxels correspond to voxels that are seen
by the camera and are occupied.

Virtual contact sensor model

To update the OGM a probabilistic sensor model is required. As there is no real sensor
that can provide readings about contact likelihood, a virtual sensor based on the robot
spherical model is used. The model provides the probability function of having a contact
z given a voxel state ¢;. The function is defined depending on the distance between the
robot model and the voxel d, see Eq. 4.10.

0.0 ifd<0
P(zle;) =205 ifd>0 (4.10)

0.9 otherwise

If the voxel is inside the model then P(z|c;) = 0, we can be sure that the voxel is free
of contact. If the voxel is outside the hand model, there is no information about the
contact state of that voxel, hence P(z|¢;) = 0.5. Finally, if the voxel is on the surface
of the hand model it is likely that the contact happened there, thus P(z|c;) = 0.5.

Object motion detection

To detect the motion of the object produced by a contact, an object tracking approach is
implemented. In the literature there are algorithms for model-less object tracking based
on image descriptors such as SIFT [Lowe, 1999], SURF [Bay et al., 2008], or Harris
corners [Harris and Stephens, 1988]. However, these methods make the assumption
that the objects have texture, a regular shape or that the descriptors are visible all
the time. As we do not make any assumption of shape or texture and the hand of the
robot may occlude parts of the object, we have chosen the Iterative Closest Point (ICP)
algorithm [Zhang, 1994] as our approach to object tracking. In particular, we use the
standard ICP algorithm implemented in PCL [Rusu and Cousins, 2011]. The ICP does
not require any features of the object and exploits 3D data.

ICP is applied to the object point cloud at instant ¢t* and t*~!. The algorithm provides
as a result a homogeneous transformation matrix that is decomposed in a translation
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vector T'(z,y,z) and a quaternion ¢(z,y,z,w) from which an angular rotation © is
obtained.

When the magnitude of the translation vector ||T'|| or the angular rotation © are grater
than a configurable threshold (||7|| > Tiaz 0r © > O,4.), the object has moved and
therefore a contact has happened. The thresholds should be tuned regarding the noise
of the sensor used and the noise introduced if the hand occludes the object.

OGM update

The OGM is updated each time step. If no object movement is detected, the voxels
that are inside or on the surface of the model are updated. The new likelihood value
for this voxels is 0, as can be obtained replacing P(z|c;) = 0 in Eq. 4.11. Voxels that
are outside the model and not on the surface, keep the same value. Finally, if object
movement has been detected the surface voxels are updated according to the following
rule:

__ Plal2)* - Plele)
> (Plel)F " Plle)

T

P(cq|2)" (4.11)

Where P(z|c;) is the probability of a measure given a occupied voxel (¢;), in other
words, the virtual sensor model. P(c;|2)*~! is a priori probability to be occupied given
a measure z and P(c;|2)¥ is the a posteriori probability to be occupied given a measure

z.
Contact hypotheses generation

When object movement is detected, contact hypotheses are generated. First, the voxels
from the OGM with high likelihood are selected. Second, contact hypotheses are gen-
erated on the location of those selected voxels. Finally, the likelihood assigned to the
hypotheses is uniformly distributed among all the generated hypotheses.

The range sensor hypotheses generator was implemented only for Tombatossals, al-
though it can be implemented also for ARMAR-IIIb using its stereo head as a range
data sensor.

4.4.5 Finger pose feedback hypotheses generator

This generator exploits the compliance of robotic hands. Usually, contacts on compliant
fingers will move the finger joints without any control command being applied to them.
The involuntary variation of compliant hand finger positions can be detected by the
hand encoders and used to detect a contact on the fingers.

If there are multiple contacts at a time on the same finger, the encoders are not able to
detect that situation. Thus, this is a single-contact hypotheses generator. To determine
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Figure 4.7: Example of the hypotheses generated by the range sensor generator. Left:
Real scenario. Center: Segmentation using spherical model. Right: Generated hypothe-
ses.

the location where the contacts will be generated, as there is no information available
on the direction or position of the contact, it has to be inferred from the joint readings.
Using the robot model, the contacts will be generated all over the finger’s surface.

Before starting the detection, the current pose of each finger joint is stored. When a
variation on a joint is detected, the finger geometry together with the proprioception and
joint values is used to place the contact hypotheses. Like for the force-torque generator,
the likelihood is uniformly distributed among all the generated hypotheses, see Fig. 4.8.

This generator assumes that the hand joints are not actuated, if the hand is moving
or actively applying forces to the environment this generator is disabled. After moving
the hand joints to a different position, the generator is reset to get the reference values
updated.

The finger pose feedback hypotheses generator was implemented only for ARMAR-IIIb.
Tombatossals does not have compliant hands.

4.5 Implemented support hypotheses generators

In this section we present the implementation of support contact hypotheses generators
based on simulation, kinematics and control. It is important to remind that, as explained
in Sec. 4.2.1, Support hypotheses cannot be considered standalone, Support hypotheses
that are not fused with Regular hypotheses will be discarded. The final effect of Support
hypotheses is to narrow down the contact localization projecting predictions into the
Regular hypotheses provided by other generators. The use of Support hypotheses, allows
us to project predictions or beliefs into the contact space. The benefits of using this
approach are experimentally validated in Section 4.7.
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Figure 4.8: Example of the hypotheses generated by the finger pose feedback hypothe-
ses generator. Left: Initial scene, hand moving towards the object. Center: The hand
contacts the object and the compliant finger bends back. Right: Generated hypotheses
on the compliantly bended finger.

Figure 4.9: Example of the hypotheses generated by the motion estimation support hy-
potheses generator. Left: Initial scenario. Center: Arm motion Right: Generated support
hypotheses.
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4.5.1 Motion estimation support hypotheses generator

This generator exploits the current motion of the robot to produce support contact
hypotheses in the locations where the robot will be in the next time step. Using the
current joint positions and their velocity, contact hypotheses are generated on the next
predicted hand position. As this generator is not based on physical evidence, it produces
only Support hypotheses.

This generator estimates the position of the robot joints in the next time step using the
previous joint positions. The predicted position of the robot joints ¢(t+ 1) is calculated
using Eq.(4.13)

Ag=q(t) —q(t — 1) (4.12)

qt+1) =q(t) + Aq (4.13)

With the predicted joint positions, the generator uses the robot model to produce
support contact hypotheses on the space that will be occupied by the robot in the next
time step as depicted in Figure 4.9.

There are no constraints about the number of contacts that could be detected using
this method, thus this is a multi-contact generator. Moreover, there is no value that
can be related to the contact likelihood and the hypotheses are generated with a fixed
likelihood value. The likelihood of the generated hypotheses depends on the weight we
want to give to this support generator. During the experiments we found that a good
value is 0.3. Motion estimation support hypotheses generator was implemented both

for ARMAR-IIIb and Tombatossals.

4.5.2 Simulator predictions support hypotheses generator

Another opportunity to narrow down the contact localization problem, is the use of
simulators to estimate where the contacts are more likely to happen. Using the simulator
as a prediction engine, together with the model of the environment and the objects,
allows us to generate support hypotheses at the locations where the simulation engine
detects collisions between the robot and the environment or objects.

This generator produces Support hypotheses because it is not directly measuring phys-
ical interaction between the robot and the environment. It uses the integrated Open-
GRASP simulator as a prediction engine to detect where contacts are supposed to
happen. In the simulator, the model of the robot, the environment and the objects
in the workspace are previously loaded. The simulator implementation as a prediction
engine is detailed and discussed in detail in Chapter 5.
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Figure 4.10: Simulator prediction support contact hypotheses generator. Left: Simula-
tor, Right: Support contact hypotheses generated (green voxels).

This generator uses the available methods in OpenRAVE/OpenGRASP and generates
Support hypotheses where contacts in simulation are detected (Fig. 4.10). There is no
limitation on the number of contact points that this generator can detect, thus this is
classified as a multi-contact generator. Moreover, the set of contacts provided by the
simulation engine do not have any related confidence value that can be used as the
likelihood. Hence, the likelihood used for each generated support contact hypotheses,
depends on the weight that the simulator will have in the contact localization process.
While performing our experimental validation, we found a good value on 0.5. This
generator is only implemented for Tombatossals, it can be implemented on ARMAR-
IIIb as well using its integrated simulation environment Simox [Vahrenkamp et al.,
2012].

4.6 Contact hypotheses integrator

The contact detection and localization process is separated in two main steps. First, the
hypothesis space HS is updated fusing the multiple inputs from the different contact
hypotheses generators. Finally, the H.S is traversed and a contact condensation method
is applied to determine the estimated contacts that will be the output of the whole
contact detection framework.

4.6.1 Hypotheses fusion

After all the hypotheses generators have provided their clouds of contact hypotheses, the
fusion process is performed by the integrator. The integrator receives contact hypothe-
ses from any number of generators, then fuses the incoming hypotheses and produces
estimations of contact locations (Fig. 4.11).
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As introduced in Sec. 4.2.1, the fusion is performed in the hypothesis space HS. At
the beginning, the hypothesis space is empty. When a cloud of contact hypotheses is
received by the integrator, the hypotheses are processed one by one and added to the
hypothesis space.

When adding a new hypothesis, the integrator uses the hypothesis location to check
whether that voxel is already occupied by a hypothesis. If so, both hypotheses are fused,
otherwise the hypothesis is inserted into the voxel. When two hypotheses are fused,
the resulting hypothesis keeps the location of the voxel and the force and direction
are averaged using both hypotheses values weighted by their likelihood. The lists of
likelihoods, timestamps and sources are combined with the incoming lists keeping the
newest value if the same source is in both the incoming and current lists. A hypothesis
is discarded when all its timestamps are older than a configurable timeout parameter.
This parameter should be adjusted depending on the update rate of the hypotheses.
The fusion process is detailed in Alg 4.1.

It is possible that the incoming hypotheses are generated from different sources at
different rate, to perform the hypothesis fusion, the integrator waits until the hypotheses
of all the active sources are received. From faster sources, the newest readings are used.
The sources can be plugged and unplugged to the integrator dynamically.

After receiving and combining the contact hypotheses from all the active sources, the
fused likelihood of each occupied voxel is computed using the DeMorgan’s law, see
Eq.(4.14). We assume that the measurements of the sensors are independent of each
other.

By combining the likelihoods using Eq.(4.14) we expose the integrator to be saturated
by inputs like p(c|z,g,) = 1. On the other hand, the saturation will occur only on
determined voxels and will not affect the entire HS. Moreover, the design of contact
hypotheses generators should take into account this issue, and produce very high like-
lihoods only when necessary.

n

plelz, g1, 0n) = 1= [ [(1 = p(clg:) (4.14)

=1

4.6.2 Contact condensation

As a result of the hypotheses fusion, the hypotheses space contains a cloud of contact
hypotheses with different likelihoods (see Fig. 4.11 center right). This contact hypothe-
ses provide information about the possible contact locations, in order to provide the
estimated location of the contacts, the cloud of contact likelihoods is post-processed.
To obtain the estimated contacts and their location from the fused hypotheses cloud,
different methods can be used:
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Algorithm 4.1 Contact hypotheses fusion algorithm
function PROCESSINCOMINGHYPOTHESES(hypotheses)
for all h in hypotheses do
if IsVoxelOccuppied(h.location) then
FuseHypotheses(h, GetVoxel(h.location))
else
SetVoxel(h)
end if
end for
end function
function FUSEHYPOTHESES(h1, h2)
h3.location := hl.location
h3.likelihood := h1.likelihood U h2.likelihood
h3.sources := hl.sources U h2.sources
h3.timestamp := hl.timestamp U h2.timestamp
h3.fMagnitude := weightedMean(h1.fMag, h2.fMag)
h3.fDirection := weightedMean(h1.fDir, h2.fDir)
SetVoxel(h3)
end function
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Figure 4.11: Contact hypotheses fusion and contact detection using the threshold
method for contact condensation. The likelihood of each hypothesis is color encoded
(Dark green: low probability, Light green: High probability). Red spheres show the re-
sult of the contact condensation step. Note that all the pictures use the same reference
frame.
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Figure 4.12: Comparison of the contact detection results using three different contact
condensation methods: threshold, weighted centroid and threshold-cluster-centroid. Red
spheres show the result of the contact condensation step. In this case the clustering
based method is able to detect the two contacts accurately while the weighted centroid
detects only one and the threshold detects too many.
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e Threshold: threshold the hypotheses using their likelihood.
e Centroid: calculate the centroid weighted by the likelihood.
e Clustering: perform clustering to detect the connected hypotheses.

Those operations can be applied to the result of the fusion process. Depending on the
order of application and the parameters used, different results will be obtained. We
have explored the application of a simple threshold and a more sophisticated approach
that performs a sequence of threshold, cluster and centroid operations. The following
subsections give more details about the parameter settings and the results obtained
using this approaches for contact condensation.

Threshold

A straightforward method is to set up a high threshold for the likelihood (e.g H(z) >
0.6), and filter the data to obtain the hypotheses that will be considered contacts. It is
likely that the result is a cloud of contacts around the real location (see Fig. 4.11), to
provide a single contact after applying the threshold, a centroid calculation weighted
by the hypotheses likelihood can be calculated.

This strategy is eligible if all the generators produce very precise data, otherwise the

likelihood will be distributed among many hypotheses and none of them will be over
the threshold.

Threshold, cluster and centroid

On the other hand we can use a low threshold (e.g H(z) > 0.1) and calculate the
global centroid weighted by likelihood. As in the previous method this will reduce the
detected contacts to a single one, if there are separated contact regions the result will
be the average of those regions. Thus, before performing the centroid calculation, the
contact regions are detected using an euclidean clustering algorithm!. Then the centroid
(likelihood weighted) is calculated for each cluster (See red spheres in Fig. 4.12).

With this condensation method, the system is able to detect multiple contacts at a
time and localize them more precisely instead of providing a cloud of contacts. On the
other hand the clustering method computation requires a nearest neighbour check for
almost every hypothesis, and in high cluttered hypothesis spaces it can reduce the speed
performance. A comparison of different combinations for the contact condensation is
depicted in Fig. 4.11.

!Clustering algorithm taken from: http://www.pointclouds.org/documentation/tutorials/
cluster_extraction.php
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Octree with list iterators
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Figure 4.13: Suggested data structures for the implementation of the contact space and
the sensor fusion framework. An octree indexes the linked list that contains all the
contact hypotheses.

4.6.3 Implementation guidelines

The contact hypotheses space occupation is represented by an octree to efficiently re-
trieve whether a voxel is occupied by a hypothesis. The core implementation of the
integrator is a linked list of contact hypotheses indexed by the octree (See Fig. 4.13).
Each leaf from the octree contains an iterator that points to an element of the list
that contains all the hypotheses. The octree is used for nearest neighbor searches in
the hypothesis space, meanwhile the list is used to access all the contact hypotheses
sequentially (i.e. to check the hypotheses timestamp or threshold the hypotheses by its
likelihood).

4.7 Experiments

To demonstrate and validate the sensor fusion framework proposed and show its suit-
ability for the contact detection and localization problem, we have conducted two ex-
periments: a validation and a use case.

On Tombatossals we have performed an experimental validation of the implemented
contact hypotheses generators and the fusion method. On ARMAR-IIIb we have applied
the contact detection method on a real grasping situation; using the contact output
information to drive a reactive grasp algorithm like [Felip and Morales, 2009] or [Hsiao
et al., 2010]. We have used the same voxel size in the generators and in the integrator,
5mm side. Thus, the precision of the contact detection is limited to the 5mm resolution
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of the hypothesis space. The selected contact condensation method is the threshold,
cluster and centroid.

4.7.1 Experimental validation

The experimental validation is performed using the Tombatossals robot. This experi-
ment consists on touching three different objects (a box, a cylinder and a sprayer bottle)
each one from 15 different approach directions for a total of 45 touch experiments.

For the evaluation two performance metrics are used:

e Detection rate: Measures the number of contacts detected over all the contacts
that really occurred. This metric provides the likelihood that the used sensor
modalities detect a contact.

e Localization error: To measure the precision, we compute the error of the detected
contact location as the distance to the ground truth contact location. This metric
provides information about the accuracy of the contact localization.

In order to validate the benefits of using a sensor fusion approach, the contact hypothe-
ses provided by each generator, are recorded separately. Then, the contact detection
results are obtained for each modality, without fusing data from different generators.
After that, we obtain also the contact detection results using all the modalities at the
same time. The results are evaluated with the proposed metrics.

Experimental setup

Environment

The scenario consists of an object on a table in front of the robot, the object is in a
known position inside the arm workspace, so the robot can touch it easily from different
approach directions.

Test objects

Three different objects are used for the validation experiments. A box, a cylinder and
a sprayer bottle (See Fig. 4.14).

Assumptions

The 3D models of the objects are known. The position of the objects on the table is
also known. For the execution of the experiments, the position is kept static in the real
scenario. On the other hand, to simulate the uncertainty of state of the art object pose
estimation algorithms (e.g. [Aldoma et al., 2012]), the pose of the object is modified
with Gaussian noise in the simulator.
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Figure 4.14: Test objects used for the validation of the contact detection framework.
To show the scale of objects a 1 Euro coin is placed next to each object.

Ground truth data

To obtain the ground truth data, the position of the object is calibrated using the
robot left arm. The calibration is manually performed: touching several points of the
real object and moving the simulated object to fit those positions. With the object
position calibrated in the simulator, we have used the joint positions recorded from
the experiment execution to get the exact hand-object contact points and use them as
ground truth data. Two of the experiments did not really touch the object, they were
removed leaving 43 touches. To keep the ground truth valid, the object is fixed and
cannot be moved by the robot during the experiments.

The role of the simulator in this experiment is twofold, as a ground truth tool and as
a prediction engine.

Hypotheses generators

The hypotheses generators used for the validation experiments are: force-torque sensor,
tactile sensors, range sensor and simulator.

In this case, the simulator is used as a prediction engine to generate support contact
hypotheses. In order to model the uncertainty introduced by state of the art 3D ob-
ject recognition and pose estimation methods [Aldoma et al., 2012] we have added a
Gaussian error, V(g = 0,0 = 2) in cm, to the objects calibrated position.

Results and discussion

The results, after the execution of 43 touches, are shown in Table 4.1. The distance
between the ground truth contact and the result of the contact condensation (See
Sec.4.6.2) is used as the error measure €. The standard deviation of the centroid cal-
culation performed by the contact condensation is used as the precision measure o.
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Figure 4.15: Results for the touch experiments considering different sensor modalities.
Results are grouped by sensor modality, each one has 43 slots, one for each touch
performed, if the contact was detected a bar shows the € and ¢ for that contact.

Sensor Modality Detected contacts e(cm) o(cm)

Tactile 0/43 (20.9%) 125  +0.20
Force 34/43 (79.1%) 537  £1.18
Range 25/43 (58.1%) 3.74  £0.73
All 39/43 (90.7%) 431  £1.10
All + Simulator 39/43 (90.7%)  3.33  +1.11

Table 4.1: Results for each sensor modality. Number and % of detected contacts. €
shows the distance between the ground truth and the detected contact. o is the mean
dispersion of the centroid calculation.
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In Table 4.1 the mean accuracy and precision considering different sensor modalities
is shown. Fig.4.15 depicts the individual results for each touch experiment considering
different sensor modalities.

Although the tactile sensor modality has a small localization error (around lem £0.2)
the contact detection is quite low, 20.9%. This low detection rate is related to the
reduced area that the tactile sensors can cover, thus many contacts happen outside the
tactile sensor patches. Regarding the force-torque generator, although the detection
rate is good (79.1%) the localization error is around (5cm £1.18), the force-torque
contact hypotheses generation method is very sensitive to noise and the effect of multiple
contacts decreases the accuracy. The range modality shows average contact detection
(58.1%) and good accuracy (3.7cm £0.73), the main problem of this modality is that
it requires the object to be moved in order to detect contacts.

Fusing the modalities, the detection raises to 90.7%. The accuracy depends on which
sensors are detecting the contact. The fusion method automatically takes the most
precise sensor (i.e. the hypotheses cloud with higher probability density). Note that the
error (4.31cm +1.1) is increased by those cases where only the force sensor generates
hypotheses. This problem is solved adding the predicted contacts from the simulator,
this reduces localization error by 23% leaving it at 3.33cm.

It is important to note that, beyond the sensors precision, the object position uncer-
tainty (modelled by N(0,2) cm), the robot model error and the joint encoders error
also influence the final results.

4.7.2 Grasping application

To test the sensing framework on a real application, we have implemented a robust
grasp primitive like the one presented in Sec.3.3.1 that uses the contact location output
from the contact detection framework. The purpose is to test if the controller is able to
grasp the bottle using the provided contact feedback.

Experimental setup

Environment

The scenario consists of a bottle on a table in front of the robot, the object is inside the
arm workspace, so that the robot can grasp it without the need of moving the base.

Test objects

The test object consists on a transparent sparkling water bottle. The bottle is almost
full as can be seen in Fig. 4.16.
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Assumptions

The robot hand is placed approximately in front of the object, so it satisfies the initial
condition for the grasp controller explained in Sec.3.3.1. There is no previous knowledge
about the object shape, weight or other properties.

The object is not fixed and can be moved by the robot, only generators that depend
on the object position (simulator predictions) would be influenced by this fact but for
ARMAR-IIIb the simulator predictions are not implemented.

Hypotheses generators

The hypotheses generators used for the grasping experiments are: force-torque sensor,
tactile sensors, finger pose feedback and motion estimation.

Results and discussion

The result of the experiment is shown in Fig. 4.16. The robot is able to detect the contact
location fusing the information coming from the force sensor and from the arm motion.
In this case, neither the tactile sensors nor the finger position did detect the contact.
Using the detected contact location, the grasp controller can perform the corrective
movements triggered by unexpected contacts and successfully grasp the target object
even if the approach vector is not exactly in front of the object.

Under the experimental conditions, the sensor rate achieved was around 6Hz. It is
important to note that all the system (sensor generators, integrator and visualization)
were running on an average computer with two cores. As the hand was moving slowly
for safety reasons, 6Hz were enough to react to the detected contact, correct the hand-
object position and grasp the object successfully.

A more efficient implementation that decouples visualization from the contact detec-
tion framework, combined with a more efficient implementation of contact hypotheses
generators resulted in a detection frame rate equal to the slowest contact hypotheses
generator, faster than 30Hz.

4.8 Conclusion

In this chapter we have shown theory, validation and application of a sensor fusion
method focused on contact detection. This framework provides multi-modal contact
event detection to our system, a key element in the proposed approach for human
inspired robotic manipulation.

One of the contributions is that the method allows input from other sources but sensors,
such as context, predictions or environment. We have shown that the projection of
predictions or beliefs into the sensor space improves the results.
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(a) Motion support hypotheses are generated (b) Contact detected. Force-torque hypotheses are
while the hand moves. fused with motion support hypothesis.

(¢) Contact information is used to correct hand (d) Finally a good grasp is achieved.
pose.

Figure 4.16: Execution on a real robot. Black voxels: Discarded hypotheses. Green
voxels: Hypotheses after likelihood threshold, Red voxels: Contact detection output.

The theoretical approach has been implemented in two different robotic platforms. The
experiments carried out using Tombatossals have shown that the method is suitable
to be used in real environments providing a framework to fuse sensor, simulation and
prediction data to improve contact detection and localization. The experiments also
show that the fusion of different sources performs better than the sources separated.

However, it is important to highlight that the likelihood threshold used in the contact
condensation to discard low probability hypotheses is a key parameter. Its selection may
change the behaviour of the sensor fusion system. Moreover, the clustering approach
used to determine how many contacts are detected, has a computational cost very
sensitive to the number of hypotheses considered. If the hypotheses number grows too
high, it may affect the performance of the contact detection system.

Using a common representation for all the sensory inputs enables contact based con-
trollers, presented in Chapter 3, to be more hardware independent. This makes systems
more portable (same inputs), scalable (easy to add new sensors) and robust (failure
tolerant). Moreover, as we show in this work, this level of abstraction enables the addi-
tion of non sensor data like: context, control or predictions. In this way we provide the
manipulation primitive framework with a platform independent perceptual system that
can be used to implement hardware agnostic primitives allowing the robots to share
plans more easily.
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The implementation on multiple platforms shows that the approach can contribute
to the sensor skills of any robot or even enable the interaction of different robots on
sharing and combining their knowledge about existing contacts. This opens the door to
multi-robot scenarios, where contact hypotheses generators from different robots can
be used together to share physical interaction information and detect contact events.
The framework is not only limited to robots but to any source of contact information,
it is also suitable for ambient intelligence.

The precision of the contact detection is limited by the accuracy of the contact hypothe-
ses generators. Hence, further research on the proposed contact hypotheses generators
or the addition of more precise sensors will help to improve the overall performance of
the system. Moreover, with a few modifications the framework can also be used to detect
surprise (prediction and sensing mismatch) and enable low level reactive behaviours,
internal model refinement or higher level reasoning.

The described framework, contact generators and experiments were published in [Felip
and Morales, 2014]. The RGBD based method used to implement the range sensor
contact hypothesis generator was published in [Bernabe et al., 2013].
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