Chapter 3

Manipulation primitives

As detailed in Chapter 2, neuroscience studies concluded that humans likely perform
tasks as a set of different action-phase controllers that attain task subgoals. Experimen-
tal results from Chapter 2, suggest that humans learn a set of corrective reflexes that
are triggered automatically during the execution of action-phase controllers in order to
adapt to unexpected events.

This chapter, inspired by the action-phase controllers, proposes the paradigm of manip-
ulation primitives, a tool for modelling and execution of reactive manipulation actions.
Manipulation primitives constitute a vocabulary of atomic sensor-based actions, which
can be coordinated using graphical methods to describe complex tasks.

We define a manipulation primitive as a single reactive controller, designed to perform
a specific primitive action on a particular embodiment. Each primitive is parametrized
to allow it to be used in different situations. A focused control policy, which uses the
available sensor feedback, is then used to achieve predefined success or failure conditions.

The strength of the manipulation primitives paradigm is demonstrated by developing a
set of primitives for object transport and manipulation. After providing the implemen-
tation and testing of several basic primitives, two examples of a complex task composed
by those primitives are shown.

The embodiment independence that this paradigm enables, is detailed and discussed in
Chapter 6 together with the main system architecture.

3.1 Related Work

3.1.1 Manipulation primitives

The idea of control primitives is not new in robotics, and particularly in robot grasp-
ing. Earlier works propose individual control primitives for different problems such as to
control a hand [Speeter, 1991], to define object movements [Michelman and Allen, 1994]
and its relations [Morrow and Khosla, 1997] and to control a manipulator [Hasegawa
et al., 2003]. Despite different definitions of primitives, all of them present a common

29

CONTACT DRIVEN ROBOTIC MANIPULATION

trend, discretizing and reducing the complexity of controlling a robotic setup by re-
ducing the search space for planning. Other similar approaches include Object Action
Complexes [Kriiger et al., 2011] and the physical interaction framework of [Prats et al.,
2010].

An apparently similar concept are Dynamic Movement Primitives (DMPs) introduced
by Schaal et al. [Schaal, 2006]. DMPs describe motion trajectories by means of differ-
ential equations, which can be adapted to several situations by adjusting a few of the
equation parameters and are deeply interlinked with motor control. This framework
has proved to be very effective to represent standardized arm movements, which can
be learned by human observation or demonstration [Schaal et al., 2005], and can even
be adapted reactively as the scene is observed to change. However, they are basically
different idea of primitives presented in this chapter. DMPs are focused on motion
description in a lower level, while our primitives describe robot manipulation skills.

3.1.2 Sensor based control

As suggested in Chapter 2, corrective reflexes are a mechanism used by humans to adapt
to unexpected events while manipulating objects. An approach to address the problem
of unknown environments is to use sensors, for example vision, to build the necessary
models. Vision has been used to obtain the shape of unknown target objects [Morales
et al., 2006, Aarno et al., 2008] and to determine the location and pose of objects [Azad
et al., 2006]. In both cases, visual input was used to plan feasible grasps. On the other
hand, visual feedback can also be used on-line during reaching for an object. [Murphy
et al., 1993] uses visual techniques to correct the orientation of a four-finger hand while
approaching an object to improve contact locations.

Once contact between object and robot has been reached, tactile and force sensors
can be applied. Tactile measurements can be used to estimate the quality of grasps
[Coelho Jr. and Grupen, 1997, Platt et al., 2002, Mouri et al., 2007, Bekiroglu et al.,
2011] or the shape of an object [Allen and Roberts, 1989] with the purpose of reaching
better contact locations through a sequence of grasping/regrasping actions. Contact
information can also be used to program complex dexterous manipulation operations
like finger repositioning while holding the object [Coelho Jr. and Grupen, 1997, Huber
and Grupen, 2002]. Several works have combined the use of several sensors to complete
the process of grasp planning and execution [Allen et al., 1997, Grzyb et al., 2008].

3.2 Manipulation primitives framework

A manipulation primitive is a single reactive controller, designed to perform a specific
primitive action on a particular embodiment. However, there are primitive actions that
do not involve physical interaction but perception. Hence, we define perceptual primi-
tives as sensor based processes focused to obtain information from the environment or

30

CHAPTER 3. MANIPULATION PRIMITIVES

detect events. Fvents represent the detection of a specific perceptual or internal condi-
tion. Primitives are together with events the elementary symbols of a vocabulary that
is used to describe tasks. Tusks are defined as a cyclic, directed, connected and labelled
multi-graph where the nodes correspond to primitives (or other tasks) and the edges
to events. It is important to highlight that a task, can also have as nodes, not only
primitives but other tasks. A task is usually a semantically meaningful goal, such as
emptying a grocery bag or clearing a table. An example of task definition for clearing
a table is depicted in Fig. 3.1.

The main concepts of the manipulation primitives paradigm are summarized in the
following list:

Manipulation primitive A reactive controller, designed to perform a specific primi-
tive action on a particular embodiment.

Perceptual primitive A sensor based process focused to obtain information from the
environment or detect events.

Events Represent the detection of a specific perceptual or internal condition and are
triggered by manipulation or perceptual primitives.

Task A cyclic, directed, connected and labelled multi-graph where the nodes corre-
spond to manipulation primitives or tasks and the edges to events.

Plan An instance of a task with the parameters set for a specific execution in a deter-
mined scenario and context.

Manipulation primitives are parametrizable, thus, a task planner requires some in-
formation (i.e. parameters) to tune and instantiate tasks for a specific scenario. The
description of such a planner is out of the scope of this thesis but its outcome must be
a composition of parametrized primitives to address the target scenario (See Fig. 3.1).
Finally, primitives can finish with several degrees of accomplishment, which in its more
simple expression would be an event from the pair Success/Failure.

Although some of the parameters are set by the task definition itself, there are still some
others that must be defined for a specific scenario and environment state. Moreover,
the parameters can be defined and changed on-line according to the result of other
primitives or internal conditions. An instantiation of a task with defined parameters
according to the current scenario is called a plan.

In this thesis, the focus is not in pure perception but in sensor based manipulation.
However, a set of perceptual primitives is necessary for high level task definitions. For
example, an important role of the perceptual primitives is the object detection, recogni-
tion and scene understanding that can lead the parameter tuning for other subsequent
primitives during the execution of a plan.

31

CONTACT DRIVEN ROBOTIC MANIPULATION

.
Grasp Slide
Move — Unscrew
Release
Transpart — Explore Hold
Determine Detect tablewp

place location object

(a) Primitives are the elementary symbols of a vocabulary used to compose tasks.

Pick
success success . success
Move > Grasp > Lift >
Place
success success success
Transport > Place > Release >

(b) Simple tasks can be composed combining manipulation primitives connected by

events.

- Success

Clear the tableJ
Detect Success success| Determine |success
tabletop — Pick place —| Place
object location

no objects left

»
|

(¢) Definition of the clear the table task using pick and place sub-tasks and perceptual
primitives.

Figure 3.1: Composition of the clear the table task. Starting with the vocabulary of
primitives, the primitives are connected by events to form simple pick and place tasks.

Then the pick and place tasks are used in combination with more primitives to define
the clear the table task.

32

CHAPTER 3. MANIPULATION PRIMITIVES

Primitives are embodiment specific. However, embodiments with similar capabilities
allow the definition of primitives with similar behaviour and purpose, which can be
thought as abstract manipulation primitives. The focused purpose of primitives simpli-
fies the development of equivalent primitives on several embodiments. This equivalence
also enables the transmission and execution of plans between different embodiments.
The abstract manipulation primitives can then be used to describe abstract actions.
The abstraction mechanisms are described in Chapter 7.

3.3 Sensor-based primitives for manipulation

Table 3.1 shows the implemented vocabulary of primitives, their description and some
examples of tasks where the primitives could be used. This set of primitives is sufficient
to deal with many of the manipulation tasks a robot may encounter in household,
real-life scenarios. However, there are potentially many other manipulation primitives
that could be implemented, to enable a robot to perform a wider variety of tasks, or
improve the performance of some of them. Some examples to extend the presented
primitive vocabulary are push, pull and button pushing. Moreover, focused primitives
for specific tool use, would further extend the tasks that the robot is able to perform.

Primitive Short description Task examples
Secure a stable grasp that rigidly at-

Grasp taches an object the hand Clear the table, empty a box
Transport Movg a grasped ObJeCt. from the a Clear the table, bring water
starting to a target position
Place Move the grasped object towards a Set the table, load the dishwasher

supporting surface to place it
Release a grasped object opening
Release the hand and moving the arm if nec- Pour water, load the dishwasher
essary
Slide an object over a surface to-
wards the target position
Move the hand towards a specified
Explore direction and stop when a contact is Empty a grocery bag
detected
Perform a series of grasp and twist
Unscrew movements on an object cap to un- Pour water
screw it

Slide Wipe the table

Table 3.1: Description of the implemented vocabulary of manipulation primitives.

33

CONTACT DRIVEN ROBOTIC MANIPULATION

Name Parameters Control and sensor requirements
Robust grasp Pregrasp size, grasp preshape Arm control, FT and tactile sensors
Transport Obstacles, trajectory, constraints Arm control
Place Contact threshold Arm control, Force-torque sensor
Release Hand position Arm control
Slide Slide force threshold Arm control, Force-torque sensor
Explore Direction, Contact threshold Arm control, Force-torque sensor
Unscrew Grasp force, pull force threshold, unscrew angle Arm control, FT and tactile sensors

Table 3.2: Implemented manipulation primitives, parameters and requirements.

The primitives are described independent of a particular hardware platform but a set

of control and sensor requirements are needed to implement each one of them (See
Table 3.2).

All the primitives are parametrizable, requiring one common parameter: an approach
vector (6D pose). It will be used conveniently depending on the primitive purpose. All
the implemented primitives, together with some of their optional parameters are listed
in Table 3.2. The primitives detailed in this section were implemented for either the
right (Barrett Hand) or left (Schunk SDH2 Hand) hands of the UJI Humanoid torso:
Tombatossals. See more details about the robotic platform in Appendix A.1.

3.3.1 Grasp primitive

Object manipulation requires direct or indirect interaction with objects. Although ob-
jects can be manipulated using tools, non-prehensile manipulation or caging grasps, it
usually requires to establish a rigid relation between the target object and the robot
end effector. In that scenario, the manipulated object is usually attached to the robot
end effector after a grasp execution.

Regardless of the grasping taxonomy considered (e.g. [Feix et al., 2015], [Cutkosky,
1989]), there is a wide variety of grasp types. However, this primitive provides a generic
grasping ability that can be used for the main grasping requirements of a robot. For
other types of non-prehensile manipulation, specific grasps for tool use or control panel
interaction, other focused primitives should be used.

The simplest implementation of a grasp primitive would consist of closing the robot
hand. It has, however, been demonstrated that by using sensor based methods the
success rate of this primitive can be increased significantly [Felip and Morales, 2009].
We propose a novel sensor based controller that performs several corrective movements
in order to achieve a stable grasp. The purpose of the corrective movements is to place
the hand in a position that is more likely to produce a stable grasp than the initial
position. For the implementation of corrections, inspiration was taken from the human
experiments presented in Sec. 2.3.6.

34

CHAPTER 3. MANIPULATION PRIMITIVES

Object alignment Sliding grasp

Correction Correction
Ty>=Tt Vx, -Vz Fz > Ft -Vz
Move forward [\
Vz

A Ty <=-Tt

> Close fingers Fingers closed, tactile contacts| ™

Fz <= Ft{ Correction
Vz

Tt<Ty < Tt

Correction
-Vx, -Vz

Finger lost|detected

Finger lost

Correction ‘
Shift 5cm +Y F3 \

Open
Correction fingers
Shift 5cm -Y F1

Figure 3.2: Robust grasp primitive. F'z is the force in the Z hand axis, T'y is the torque
on the Y hand axis, Tt is the Y torque threshold, F't is the Z Force threshold, Vz is a
velocity in the Z hand frame. Vz is a velocity in the X hand frame. Important reference
frames are depicted in Fig. 3.3.

Primitive description

The initial assumption of the grasp primitive is that the hand is near the object, at a
close distance. If the starting position of the hand has been carefully planned and the
positioning in the vicinity of the object executed accurately, the hand should only move
towards the specified grasp direction and close to obtain a stable grasp of the object.
Unfortunately, this is not often the case, a series of corrective movements are thus
performed in order to obtain a robust grasp. These corrections are executed sequentially
and divide the primitive execution into three main phases: alignment, sliding grasp and
force adaptation (See Fig. 3.2).

A previous version of this primitive was published in [Felip and Morales, 2009]. A
similar strategy is used by [Kazemi et al., 2012] also showing robustness and better
grasp performance under uncertainty than non-reactive approaches.

The corrections are performed depending on the estimation of the location of the de-
tected contact. The implementation of this primitive is preshape independent, thus the

35

CONTACT DRIVEN ROBOTIC MANIPULATION

Figure 3.3: Robot important reference frames. Left: Right hand reference frame. Center:
Robot base reference frame. Right: Left hand reference frame.

grasp type used (if not set by the PREGRASP_TYPE parameter) will depend on the
hand configuration in the instant when the primitive takes control.

Alignment

In some situations, the initial starting position and the grasp direction result in the hand
not correctly facing the center of the object (Fig. 3.4a), and thus there is a premature
collision during the approaching (Fig. 3.4b). This contact is detected using a wrist
mounted force-torque sensor. Using the torque, the contact point is estimated and a
correction is performed to center the object (Fig. 3.4c).

Uy — Uy if Ty > 71tr‘eshold

—

Uy — ’U_; if Ty < _T;freshold (31)

—

v, otherwise

<l
I

Eq. (3.1) shows the controller that performs the alignment phase of the robust grasp
primitive. Where ¢ is the resultant velocity that is applied by the controller to the
hand (w.r.t hand frame) and is a combination of v; = (V,,0,0) and v, = (0,0,V,).
Where V. and V, are the parameters that control the speed of the corrections produced
by the controller movements. 7}, is the torque around y-axis (w.r.t. hand frame). The
alignment is finished when a contact is detected and —T}esnora < Ty < Tireshold

An example of an execution of this phase is depicted in Fig. 3.4. The contact can be
also detected using the tactile sensors available. Alignment correction improves grasping
of objects with location uncertainty by allowing the hand to align its center with the

36

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.4: Grasp primitive: Alignment phase. (a)Arm moving towards the object.
(b)Contact generates torque in the wrist. (¢)Correction movement is performed.

object. The effects of this alignment phase are analysed in Sec. 3.4 where a thorough
evaluation and comparison is conducted and the results are discussed.

Sliding grasp

When approaching, the hand makes contact in occasions with the supporting surface
instead of the object (See Fig. 3.5(a)). In this case, closing the hand can result in
unsuccessful grasps especially for small objects. To counter this problem, a sliding
correction is used. The corrective movement consists of moving the hand forward or
backward depending on the force sensed along its Z axis. Concurrently the fingers are
closing (see Fig. 3.5) to maintain stable, light contact with the supporting plane. When
the fingers are no longer able to close, because the object is grasped or the fingers
reach their joint limits, the sliding grasp control ends. The correction allows grasping
small objects by sliding the fingers on the supporting plane until the object is securely
grasped.

It is important to highlight that this phase is also suitable to grasp objects laid out on
other surfaces different from tables or workbenches, such as handles on doors, drawers,
dishwashers and so on.

Equation 3.2 describes the arm cartesian velocity control used meanwhile the fingers
are closing where ¢ is the velocity control sent to the arm, v} is a velocity in the 7 axis
of the hand. Fz,.,s0r is the current force in Z axis of the hand read by the sensor and
Fzinreshola 18 the force threshold.

—U, if FZsensor <= _thhreshold
0 it — thh'r’eshold < Fzsensor < thh'reshold (32)
U, if Fzsensmn >= thhreshold

<l
Il

37

CONTACT DRIVEN ROBOTIC MANIPULATION

Figure 3.5: Grasp primitive: Sliding grasp phase. (a)The fingers contact the table while
closing and the normal force F'n is detected by the force sensor. Thus the controller
sets the velocity to —v, in order to move the hand back. (b)The fingers are closing and
although the fingers touch the object exerting the contact force F'c, the contact with
the table is lost. Therefore, v; is set forwards. (¢)The hand contacts the table again
but the object is already grasped and the fingers can no longer keep closing, hence the
sliding grasp phase ends.

The behavior of this correction phase is shown in Fig. 3.5. The hand starts closing and
when the fingers make contact with the surface, the force they are applying is detected
in the wrist, thus the arm moves back (Fig. 3.5(a)). The fingers continue closing and
because no contact force is detected, the arm moves forward (Fig. 3.5(b)). In Fig. 3.5(c)
the fingers are not able to close anymore and the sliding grasp ends.

Finger lost correction

It may happen, if the error is big enough, that the hand closes and one of the external
fingers lose contact with the object. In this case, the finger lost corrective movement is
triggered, the hand opens and shifts towards the detected contacts in order to place all
the fingers on the object. Fig. 3.6 shows the execution of such a corrective movement
in a real experiment.

Force adaptation

The force of the fingers is increased to improve grasp stability. The primitive ends with
a success if at the end the object is still in the hand, detected by the joint configuration
or contact information.

Primitive parameters

e PREGRASP_TYPE (default:none): Encodes the starting configuration of the
hand, for example: cylindrical, spherical or hook. If no value is specified the cur-
rent hand configuration is used.

38

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.6: Grasp primitive: Finger lost correction. (a) Grasping position after the
alignment phase. (b) The hand closes and one finger does not contact the object. (c)
The hand opens and performs a corrective movement. (d) Finally a good grasp is
achieved.

e PREGRASP _SIZE (default:none): Can take a value from 0 to 1 and encodes the
hand opening prior to the grasp motion.

e FORCE_-THRESHOLD (default:2N): Force threshold for the contact detection
using the force-torque sensor. This value has to be set depending on the force-
torque sensor sensitivity.

e TORQUE_THRESHOLD (default:5Nm): Torque threshold for the contact detec-
tion using the force-torque sensor. This value has to be set depending on the
force-torque sensor sensitivity.

e GRASP_DIRECTION (default:[0,0,1]): Direction to move the hand to grasp the
object using the hand frame. The important frames of the robot used for the
implementation are depicted in Fig. 3.3.

e MAX DISTANCE (default:0.2m): Max distance that the hand will move towards
GRASP_DIRECTION looking for a contact. When this distance has been covered,
the primitive will switch to the sliding grasp step. This parameter has to be set
depending on the grasp planner and the hand size.

e CORRECTION_VELOCITY (default: 0.005m/s): Velocity used to perform the
corrective movements during the alignment and sliding grasp phases of the grasp-
ing primitive.

39

CONTACT DRIVEN ROBOTIC MANIPULATION

3.3.2 Transport primitive

The purpose of the transport primitive is to move the arm to a specified target position
while the hand holds an object. The primitive can also be used to move the arm without
an object.

The problem of controlling redundant manipulators has been widely studied in robotics
[Waldron and Schmiedeler, 2008, Chiaverini et al., 2008] and nowadays there are open
source tools that can be tuned to provide advanced control for custom manipula-
tors [Smits, 2015, Corke, 2011, Sucan and Chitta, 2015]. Controllers can be classified
depending on the space they are controlling (e.g. joint, Cartesian) and the control type
(position, velocity or effort). In order to ease the programmer’s task, it is quite common
that commercial robots provide and API with different joint control modes (position,
velocity, effort). However, all the controllers are finally built on top of an effort controller
that is converted to a voltage sent to the motors.

Moreover, on top of the controllers used, motion planning algorithms can be used to
plan collision free trajectories and perform optimal movements from point A to point

B.

Primitive description

This primitive implements a Cartesian velocity controller that allows the trajectory
to be constrained by specifying optional parameters. A trajectory can be specified in
joint space as a list of joint positions that define the state of each joint during all
the transport primitive execution. However, a less restrictive definition can be used by
specifying the trajectory as a list of end-effector Cartesian positions. Instead of defining
the exact trajectory that the robot must follow, it is also possible to specify position,
velocity or acceleration limits in the Cartesian space.

Equation 3.3 shows how the force-torque threshold parameter is used to stop the move-
ment if a collision is detected where yqrge¢r aNd Zeyrrens are the target and current 6D
pose vectors. n is a normalization term used to keep the resulting velocity inside the
velocity limits. The resulting velocity is sent to the Cartesian velocity controller that
converts the desired Cartesian velocity into joint velocities using the Jacobian pseudo-
inverse approach. We assume that the robot provides a joint velocity control and the
final conversion to joint efforts is done by the robot’s internal controller.

= {n<xtarget - xcurrent) if HFsensorH < Fthreshold (3 3)

v = .
0 if HFsensorH >= Fihreshold

Optional parameters can also be used to describe environment obstacles as an obstacle
point cloud, in which case a force-field [Khatib, 1985] based collision avoidance strategy

40

CHAPTER 3. MANIPULATION PRIMITIVES

is used to generate a collision free trajectory from current to target position maintaining
the hand orientation.

For instance, if the task is to transport a mug full of water without pouring the liquid,
acceleration should be constrained to a low value on all axes and the rotation velocity of
the table plane axes should be set to 0 to prevent tilting the mug. If the target position
cannot be reached without breaking the specified constraints, the primitive ends with a
failure. In Fig. 3.7 an example of a position constrained trajectory is shown. The convex
hull of the box is defined as forbidden space to define position constraints.

Jacobian pseudo-inverse approaches for Cartesian velocity control, are fast and can
work real-time, hence they are very useful for closed loop control. However, they are
gradient descent approaches and the trajectories generated may fall into local minima
quite easily if the start and end positions are separated enough or the trajectories travel
outside the workspace of the robot. Therefore, this control approaches are suitable for
close distance movements, fine manipulation and closed loop control. For long distance
movements inside the robot workspace, other approaches should be used.

As an alternative method, we have implemented an interface to well known path plan-
ning libraries such as Movelt! [Sucan and Chitta, 2015]. In this case, instead of using
an online gradient descent strategy, the trajectory is calculated in advance and a set of
waypoints is provided. The plan is executed taking into account the force-torque thresh-
old to satisfy collision security constraints. Figure 3.7(b) shows the result of calculating
a motion plan with Movelt! path planning. There is a wide variety of planning algo-
rithms that can be used, the plugin architecture of the planning library used by Movelt!
makes it simple to switch between planners and use the best for each application. For
this primitive implementation we have used the KPIECE planner [Sucan and Kavraki,
2012], it is a tree-based planner that uses a discretization to guide the exploration of
the continuous space. Their authors claim that this planner has been shown to work
well consistently across many real-world motion planning problems.

The selection of the method used to move the robot, can be automatically selected de-
pending on the distance to the target. The PLANNING_DISTANCE_LIMIT parameter
is used to decide which method to use, targets further that the configured distance will
trigger the planning algorithm. Moreover, if the target is close but a local minima is
detected while executing the movement, the control is switched to the motion planning
in order to recover, if the planning fails the primitive throws an error event.

Primitive parameters

e FORCE_THRESHOLD (default: 15N): Force threshold to consider an unexpected
contact.

41

CONTACT DRIVEN ROBOTIC MANIPULATION

Figure 3.7: Transport primitive. (a) Example of execution of the constrained transport
primitive from the starting point A to the target point B. Blue line: Standard trajectory.
Red line: Position constrained trajectory. (b) Example of a calculated plan using Movelt!
planning library.

42

ACCELERATION_LIMITS (default: [0,0,0,0,0,0]): End effector linear and angular
acceleration limits in m/s? and rad/s?. If all the values are zero, no constraints
are taken into account.

VELOCITY_LIMITS (default: [0,0,0,0,0,0]): End effector linear and angular ve-
locity limits in m/s and rad/s. If all the values are zero, no constraints are taken
into account.

OBSTACLES (default: none): Point cloud representing obstacles. Obstacles can
also be specified by geometric primitives.

WAYPOINTS (default: none): End effector 6D pose waypoint list. The primitive
will move from the starting position to the target position through the specified
waypoints.

PLANNING_DISTANCE_LIMIT (default:0.03m): Minimum distance to the tar-
get that will trigger the use of a planning approach to move the arm instead of
the on-line Cartesian velocity control.

CHAPTER 3. MANIPULATION PRIMITIVES

(a) (b)

Figure 3.8: Place primitive. (a)Arm moving the object towards the surface with velocity
U. (b)The object contacts the supporting surface and the normal force Fn is detected
by the wrist force-torque sensor.

3.3.3 Place primitive

Placing an object involves a supporting surface that usually is a horizontal plane. How-
ever, that is not always the case, the plane can be slanted or be vertical if the task is,
for example, to stick the object to the wall. Moreover, the supporting surface could not
be a plane (e.g. bowl, dish). The place primitive is used to gently place an object on a
supporting surface asserting the success using on-line sensor feedback.

Primitive description

The arm moves towards the supporting surface until a contact is detected. Equation
3.4 describes the control action taken depending on the force sensor readings where
Uplace TePresents a constant velocity defined by the VELOCITY parameter and the
SURFACE_.NORMAL parameter, vpace = 7 - v. The primitive ends when the arm
stops. This primitive can be configured with an optional parameter Fjj,csnoq defining
the force threshold needed to detect a contact. An example execution of this primitive
is shown in Fig. 3.8.

1_)» _ {_U;lace lf ||Fsensor|| < Ehreshold (34)

0 if ||Fsenso7‘|| >= Fthreshold

43

CONTACT DRIVEN ROBOTIC MANIPULATION

Primitive parameters

e FORCE_-THRESHOLD (default: 5N): Force threshold to consider that the sup-
porting plane has been contacted.

e SURFACE_.NORMAL (default: [0,0,1]): Normal of the point of the supporting
surface where the object will be placed. This will be used to determine the motion
direction.

e VELOCITY (default: [0.005 m/s|): Linear velocity towards the supporting sur-
face.

3.3.4 Release primitive

The purpose of this primitive is to release the object from a previous grasp. Releasing an
object can be difficult if the fingers, while opening, collide with the supporting plane or
other parts of the object (see Fig. 3.9(a)). To handle this problem, the release primitive
opens the hand smoothly while the arm moves back if a contact with the environment
is detected.

Primitive description

The movement of the arm is force-controlled and the arm only moves back if there is a
contact detected between the opening fingers and the surface (see Equation 3.5). The
sequence of movements that this primitive performs is shown in Fig. 3.9. This primitive
can be configured by setting the target hand position after release and the Fip eshoid
parameter.

__’z 'stensor<_F resho
U:{ UV U Iz threshold (3.5)

0 otherwise

Primitive parameters

e HAND_TARGET_POSITION(default: 1.0): Defines the target hand opening to
consider the release primitive finished. 0.0 = fully closed, 1.0 = fully open.

e FORCE_THRESHOLD (default: 5N): Force threshold to consider that the fingers
contact the supporting plane while opening.

e SURFACE_.NORMAL (default: [0,0,1]): Normal of the supporting plane. This will
determine the motion direction if the fingers collide with the surface in order to
move the hand away from the contact.

e VELOCITY (default: [0.001 m/s]): Linear velocity used to move the hand away
from the supporting surface.

44

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.9: Release primitive. (a)Hand before opening the fingers. (b)The hand cannot
release the object, the fingers are blocked by the surface and cannot continue opening.
The normal force F), in each finger propagates to the wrist. (¢)The hand moves back
and continues opening the fingers. The object is released successfully.

3.3.5 Slide primitive

A very frequent type of non-prehensile manipulation is sliding objects on a supporting
plane. The purpose of the slide primitive is to provide the robot with such an ability
by exerting a constant force on an object against its supporting plane and sliding it to
a target position.

Primitive description

Using force control the arm applies a force (F, in the desired range F,;, < F, <
Finaz) to the object, then moves towards the target, keeping the applied force constant
(Fig. 3.10(a)). The constant force F,, the arm and object allowing the robot to slide the
object on the surface from the starting to the target position (Fig. 3.10(b)).

Equation 3.6 shows the control law that keeps the force applied to the object in a
desired range while it moves the arm towards the target position. Only the target
position is a required parameter, but the applied force can be configured by setting a
desired force range defined by F,;,(LOWER_FORCE_ THRESHOLD parameter) and
Frax (UPPER_.FORCE_THRESHOLD parameter). This primitive uses a predefined
hand preshape (see Fig. 3.10).

Ttarget — Lcurrent if me < HFnH < Fmax

__)z if Fn <:Fmin

v=4 " i £ (3.6)
., if ||F|| >= Fiaz
0 otherwise

45

CONTACT DRIVEN ROBOTIC MANIPULATION

(a) (b)

Figure 3.10: Slide primitive. (a)From the starting position with a hook preshape, the
arm moves down until it touches the object, then it starts moving towards the target.
(b)The object slides over the table from P, to Py with velocity V. The primitive keeps
the applied force stable between the lower and upper thresholds.

Primitive parameters

UPPER_FORCE_THRESHOLD (default: 9N): Upper force threshold to consider
that the hand is exerting enough pressure on the object. If the value is higher the
controller will loosen the pressure moving slightly away from the object.

LOWER_FORCE_THRESHOLD (default: 5N): Lower force threshold to consider
that the hand is exerting enough pressure on the object. If the value becomes
smaller, the controller will increase the pressure moving towards the object.

SURFACE_NORMAL (default: [0,0,1]): Normal of the supporting plane. This will
determine the direction used to push the object against the surface.

TARGET_VELOCITY (default: [0.005 m/s]): Linear velocity used to move the
hand from the starting position to the target position.

CONTACT_VELOCITY (default: [0.005 m/s]): Linear velocity used to push the
object against the surface and to loose the contact in case the force applied be-
comes to high.

3.3.6 Unscrew primitive

To have a robot able operate autonomously in household scenarios, the ability to open
containers is necessary. For example, in order to pour liquids from a container, the lid

46

CHAPTER 3. MANIPULATION PRIMITIVES

Close
fingers

finger force

<
FINGERNMGRASPING_FORCE

distance

>
CAP_REMOVED_DISTANCE
> success

Pinch

(close
grasping
fingers)

Pull
(pull cap)

Twist
(twist arm)

>

ANGLE > TWIST_ANGLE

finger force
>
FINGER_GRASPING_FORCE

torque > UNSCREWNTORQUE_LIMIT

pose
reached

force > PULL/FORCE_LIMIT
Open
fingers

Figure 3.11: Unscrew primitive execution diagram. The execution begins with the pinch
phase. This diagram shows the operation of the unscrew primitive, it does not depict a
task formed of several basic primitives.

Move to
initial
pose

finger distance £ FINGER_MIN_DISTANCE

fingers
opened

needs to be opened first. Although not all the containers have a screwed lid it is one of
the most common cases.

The purpose of the unscrew primitive is to provide the robot the ability to open con-
tainers that have a screwed lid. Unlike the other primitives presented in this chapter,
the unscrew primitive focuses on solving a specific manipulation interaction that would
be very difficult to define as a task composed by other primitives.

This manipulation primitive assumes that the hand is over the cap ready to grasp it.
Moreover, it uses several parameters to adapt its behaviour to the target object.

Primitive description

The unscrew primitive is divided into three phases: pinch, twist and pull. The phases
and the transitions of the primitive are depicted in Fig.3.11. Note that the diagram
shows the internal states of the unscrew primitive in order to explain its operation and
does not depict a task formed of several basic primitives.

Pinch

Closes the selected fingers until the desired FINGER_GRASPING_FORCE is achieved
on each fingertip. The force applied is determined using the tactile sensors on each
finger.

47

CONTACT DRIVEN ROBOTIC MANIPULATION

Figure 3.12: Cap grasping and tactile sensor readings. Left: Initial cap grasping, grasping
center is not aligned with the cap. Right: Cap grasping after correcting the pose.

Twist

Twists the cap for the specified TWIST_ANGLE and transitions to the pull stage. The
hand fingers are still controlled and in the case that the contact with the cap is lost,
the fingers keep closing until the contact is detected again. This stage terminates pre-
maturely if the torque detected is over the UNSCREW_TORQUE_LIMIT parameter
or the fingers are closed without grasping the cap (inter-finger distance below FIN-
GER_MIN_DISTANCE).

Pull

On this stage the arm pulls back to test if the cap is free. While pulling, the primi-
tive is monitoring the tactile contacts and the force sensor. As in the previous stage,
the fingers keep closing if the contact with the cap is lost. If the detected force
is over the PULL_FORCE_LIMIT threshold or the fingers get closer than the FIN-
GER_MIN_DISTANCE: the fingers open, the arm moves back to the initial position
and the primitive starts again from the grasp stage. On the other hand, if the arm
pulls the cap further than the CAP_REMOVED DISTANCE the primitive terminates
successfully.

Reactive adaptation

Due to the intrinsic uncertainty of real environments and systems, it is not possible
to guarantee that the position of the fingers when pinching the cap is exactly aligned
with the center of the cap. Moreover it is also not possible to produce approach vectors
that are perfectly aligned with the cap normal vector (see Fig.3.12). Thus the cap will

48

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.13: Left: Forces and torques produced when twisting the cap with an unaligned
grasp point, Fr, and Fg, are undesired components that do not contribute to unscrew
the cap but produce undesired torques. Right: Forces and torques produced with an
aligned cap. C¢: Cap center. G¢: Grasp center. Fr: Reaction Force. T)4: Torque applied.

hardly be pinched by its center and the rotation axis of the hand will not be aligned
with that of the cap.

The twist movement performed to unscrew the cap has the rotation center in the middle
of the grasping fingers. It means that the fingers rotate around their middle point
assuming that the cap axis is centred. If the cap axis does not match with the twist
movement center, the unscrew movement will apply undesired forces on the object
(see Fig.3.13). That fact can cause the unscrew motion to move the cap or the object
away from the fingers. As the cap position is not tracked by the primitive, the object
displacement can cause the subsequent grasps to fail. Thus, the cap misalignment can
decrease the robustness of the primitive.

In order to solve this issue, a sensor based strategy is used. It dynamically aligns the
fingers center with the cap center to improve the robustness of the primitive. During
the grasp and unscrew phases, the contacts on the fingertips are recorded and averaged
over time. Before moving the arm back to the starting position, if the recorded contacts
are not aligned with the grasping fingers center frame, the distance to that frame is
used to correct the position, see Fig.3.12. As for the robust grasp primitive, we have
conducted experiments to evaluate the improvement of the reactive approaches. The
experiments and results are discussed in the next section of this chapter.

Primitive parameters

e UNSCREW_TORQUE_LIMIT: Default 10 N/m. Defines the torque limit that
will be applied by the robot to unscrew the cap. If higher torque is detected,
a collision is assumed and the unscrew movement stops and moves back to the
starting position to grasp the cap again.

49

CONTACT DRIVEN ROBOTIC MANIPULATION

e PULL_FORCE_LIMIT: Default 7N. This parameter defines the force limit when
pulling from the cap of the object. If the robot applies more than the defined force
when trying to remove the cap, we assume that it is not completely unscrewed,
hence it stops pulling and moves back to the starting position to grasp the cap
again and perform another unscrew movement.

e GRASPING_FINGERS: Default: 2. Defines the number of fingers to be used for
pinching and unscrewing the cap. This parameter is used to automatically con-
figure the preshape.

e FINGER_GRASPING_FORCE: Default: 5N. Defines the target force for each
finger. Fingers will keep closing until target force is reached.

e TWIST_ANGLE: Default: 30 degrees. Defines the angle that the primitive will
twist the cap on each twist stage.

e FINGER_MIN_DISTANCE: Default: 12mm. Minimum inter-finger distance that
will allow an object to be in hand. If the distance is shorter, the controller assumes
that the hand is closed but empty.

e CAP_REMOVED _DISTANCE: Default: 40mm. Distance that the cap has to be
separated from the container to consider it free to move away.

3.4 Experiments

Three experiments have been implemented to validate and illustrate the usefulness of
the manipulation primitives paradigm: validation of the robust grasp primitive, valida-
tion of the unscrew primitive and completion of a manipulation task using a set of the
primitives described. The two first experiments are focused in illustrating the design of
a manipulation primitive and the importance of reactive strategies. The last case is fo-
cused on showing how primitives can be combined to solve more complex manipulation
tasks.

All the experiments have been tested on real robot systems. In all of them the main
experimental platform is Tombatossals, an anthropomorphic torso with 29 DOF. The
platform is composed of two 7 DOF Mitsubishi PA10 arms. The right arm has a 4 DOF
Barrett Hand and the left arm a 7DOF Schunk SDH2. Both hands are endowed with
Weiss Robotics tactile sensors on the fingertips. Each arm also has a JR3 force-torque
sensor mounted on the wrist. The visual system is composed of a TO40 4 DOF pan-
tilt-verge head unit with two Imaging Source DFK 31BF03-Z2 cameras and a Microsoft
Kinect. Further information about this robotic platform is given in Appendix A.1.

20

CHAPTER 3. MANIPULATION PRIMITIVES

3.4.1 Validation of robust grasp primitive

As explained in Chapter 2, humans perform reactive movements to adapt to unexpected
sensor input. Intuitively, reactive movements should increase the grasp success, espe-
cially in real and uncertain environments. This experiment is carried out to validate
the intuition and quantitatively provide information about the importance of such a
reactive strategy when grasping objects.

Experimental setup

In order to compare the robust grasp primitive with a non-adaptive grasp controller,
we have designed a naive grasping primitive. The experimental procedure, for each
primitive, consisted on grasping 10 different household objects (see Figure 3.14) 20
times. 10 using the approach vector given by the visual system and 10 introducing a
random uniform error to the approach vector generated by the visual system. Thus,
each of the evaluated primitives has tried 200 grasps.

A trial is considered successful if the grasp obtained after the execution is considered
stable by a human observer. If the object, when lifted, does not move in the hand, the
grasp is considered stable by the observer.

Naive grasping primitive

We have designed a grasping strategy that does not use tactile and force sensors to
perform corrections. The naive grasping primitive behaves as follows: The arm moves
forward 10cm or until a contact is detected. Then the hand closes stopping each fin-
ger that detects contact. Finally force is slightly increased on the distal phalanxes to
establish the final grasp.

Environment

The experimental environment consists of the robot in front of a table. On the table
there is a single test object in any position that can be reached using a top grasp by
the left hand.

Test objects

In order to represent the different objects in household scenarios, an heterogeneous set
of objects has been selected. The object test set is composed of ten different household
objects (see Figure 3.14). There are objects with primitive shapes (cylinder, ball) and
symmetries (tape, wood) but there are also more complex objects (spray, stapler). The
objects are completely unknown to the robot, the primitives have no prior information
about them.

51

CONTACT DRIVEN ROBOTIC MANIPULATION

(d) Cylinder Speaker

(f) Spray g) Stapler h) Tape

Figure 3.14: Set of 10 objects used for testing the robust grasp primitive.

Assumptions

The objects have to be placed on the table inside the workspace of the arm used to per-
form the experiments. Moreover, the objects used, have to have lambertian properties
in order to be visible by the visual system used. No other assumptions about shape,
weight or other physical properties are made.

Parameter settings

There are no specific parameter settings for the primitives used in this experiments.
Both the naive and robust grasp primitives are configured with their default values as
presented in Section 3.3.1.

Object detection

In order to grasp the objects, the robot needs to determine their pose and plan a
trajectory. For this experiment we have implemented a simple approach that is well
known, fast, stable but not very precise. Using this object pose estimation, will allow
the controllers to show its performance under some uncertainty. The methods used in
this experiment to detect objects are detailed in Chapter 6.

To determine the object position, Kinect RGBD images in combination with algorithms
from the Point Cloud library [Rusu and Cousins, 2011] have been used: The table plane
is segmented out and the remaining points are clustered, the target object position is
determined by the centroid of the leftmost cluster. A detailed description of the visual
pipeline is provided in Section 6.3.3.

Approach vector calculation

As stated in Section 3.2, any primitive requires at least an approach vector as an
input parameter. Usually, the approach vector used as the starting point for a grasping
procedure, is determined by a grasp planner. In this experiment, we have used a grasp
planner based on the object point cloud eigen vectors to calculate the approach vector.

52

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.15: Set of 10 approach vectors after adding the random uniform error.

The input of the grasp planner is the segmented point cloud containing the object to
grasp. The approach vector is calculated using the simple grasp generator described in
Sec. 6.3.5 and the result is filtered by orientation to keep only vectors that approach
from the top.

In order to test the controller under rough error conditions, we have performed tests
adding a random uniform error to the approach vector calculated by the system.

The error that we have introduced to the approach vectors follows an uniform distribu-
tion, U(0,5)cm in each axis and U(0, 15)degrees on each axis. Figure 3.15 shows a set
of 10 approach vectors for an object after adding the uniform error.

Results and discussion

Table 3.3 shows the overall performance of each controller with and without the addi-
tional error. The performance of the robust controller has shown to be better especially
under error conditions. Although the results without additional error are quite good for
both controllers, the robust grasp primitive outperforms the naive one by more than
10% of success rate.

Figure 3.16 shows the performance of each controller, with and without error, for each
object of the test set. Under controlled conditions both controllers are able to perform
10 successful grasps out of 10 attempts on eight of the objects. On the other hand,
for some objects, e.g. speaker and weight, the performance of the naive controller is
dramatically reduced (5/20) while the robust controller keeps its good performance
almost intact (19/20). The main reason of that low performance is that those objects

93

CONTACT DRIVEN ROBOTIC MANIPULATION

stable grasps failures %success

naive 88 12 88%
robust 99 1 99%
naive -+ error 19 81 19%
robust + error 59 41 59%

Table 3.3: Grasping experiments overall results after 100 attempts.

100 100
90 | N [~ R e e e
80 | N [~ 80

% stable grasps
wn
o

% stable grasps
w
<}

30 | 30 1 B N Bam M maE TR SR
0 i jJ “ “ u
10 10
: ol M ML
X N XS < < < > N\ 2 < < N & < < 3 8 3 <
L RS N & - N NNE M R S N I ¢ P 2R NN P R S
> 8 N Al
G)ch, %@Q (ﬁ& L K R L’Qe,"” %@Q Q\O RN $°“\
(a) Grasping performance without error. (b) Grasping performance with error.

Figure 3.16: Grasping performance after 10 trials per object. Blue: Naive controller,
Red: Robust controller

have some properties, asymmetry and thinness, that make them difficult to grasp. On
the other hand the robust grasp primitive is able to adapt to those properties that cause
the naive controller to fail.

Under uncertainty conditions, the robust primitive is able to perform better than the
naive one. As shown in Table 3.3 under error conditions the performance of the naive
controller drops to 19% while the robust primitive holds a 59% of robust grasps achieved.

3.4.2 Validation of unscrew primitive

The purpose of this experiment is to validate the implementation of the unscrew prim-
itive, testing it on different objects. Furthermore, this experiment also validates that
the sensor-based reactive behaviour improves the performance of the primitive by com-
paring the results of tests with and without corrective movements.

Experimental setup

To validate the unscrew primitive and the impact of the reactive adaptation on its
performance, an object test bench composed of eight objects has been set up and
the task has been executed 10 times for each object with and without the reactive
adaptation enabled. Overall the unscrew task has been executed 160 times, 80 with
tactile corrections and 80 without them.

o4

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.17: Object test bench for the cap unscrew experiments. Object id on the top
right of each picture. The lenght of the measuring tape in the pictures is 40cm.

Environment

The experimental environment consists of the robot in front of a table. On the table
there is a single test object in any position that can be reached by the right hand. The
object is standing upright.

Test objects

The object test set is composed of eight different household objects (see Fig. 3.17). In
order to represent the different types of bottles and containers, an heterogeneous set of
objects with different shapes, textures, sizes, weight and with different caps was chosen.
Moreover, it is important to note that the cap thread is also different from one object
to another, hence they require a different number of turns to fully detach the cap from
the container.

Assumptions

Although the visual system is able to deal with more than one object, to simplify the
experimental process, only one object is standing in front of the robot. The objects are
unknown to the robot, the only assumption is that each object has a cap that can be
unscrewed and they are laid out upright on the table and inside the workspace of the
left arm. Objects’ surface has to have lambertian reflectance properties in order for the
visual system to detect them. No other assumptions about the objects are made.

Task definition and metrics

The same visual system and pipeline used for the robust grasp validation is used to
detect the objects (see Section 6.3.3.). Moreover, as the objects are standing on the
table, it needs to be grasped with one hand to fix it before the other hand can perform
the unscrew attempt. The grasping procedure is the same as specified in Sec. 3.4.1 but
using a side approach vector instead of a top one. Once the object is grasped it is moved
to a manually determined vantage position. Then the cap detection starts. It consists

95

CONTACT DRIVEN ROBOTIC MANIPULATION

Grasp Transport Move
Left Left Right
\d

Unscrew Transport Place Release
Right Right Right Right
Transport Place Release
Left Left Left

Figure 3.18: Unscrew task definition using the manipulation primitives framework. All
the depicted transitions are triggered by a success event. For the sake of clarity, the
error transitions are not depicted in the figure; all the primitives have a transition to
an error state.

basically on determining the centroid of the upper part of the object which is assumed
to be the cap. That centroid is used to generate an approach vector from the top that
will be used by the unscrew primitive as the starting position. The whole grasp and
unscrew task is described using the manipulation primitives framework as depicted in
Fig 3.18.

For each task execution, the following values were measured:
e Time: The time it takes to complete the unscrew primitive execution.
e Twist moves: The number of twist movements required to open the container.

e Cap unscrewed: It will be considered that the robot has succeeded unscrewing the
cap if at the end of the task execution the cap is separated from the recipient or
can be separated from the object without turning it.

e Success: It will be considered that the whole task has succeeded if the robot
removes the cap from the object and places it on the table by itself. This does
not include situations where the cap falls while lifting it or as the result of a twist
movement.

26

CHAPTER 3. MANIPULATION PRIMITIVES

Figure 3.19: Unscrew task execution sequence.

o7

CONTACT DRIVEN ROBOTIC MANIPULATION

Parameter settings

Like for the other primitives, it is recommended to set the parameters of the primitive
depending on the object and the environment, nevertheless the default parameters have
been used over the object test set with good results. Adjusting the parameters to each
object may improve the performance of the primitive.

Force-torque limit parameters were empirically obtained for our robotic platform. The
sensor readings were monitored during several executions and the parameters were set
manually.

Grasp preshape and grasping fingers were determined by the task and robot embod-
iment. These parameters are designed for future improvements, for example to allow
selecting the grasp preshape and the grasping fingers according to the cap geometry.

Distance parameters were selected regarding the smallest cap diame-
ter possible (FINGER_MIN_DISTANCE) and the maximum cap height
(CAP_.REMOVED DISTANCE).

Results and discussion

The overall results are shown in Table 3.4. After 80 task executions for each primitive
configuration (with and without corrections enabled), the success rate of both primitives
is very high, almost 90%. Although the primitive with the reactive adaptation enabled
has slightly better success rate, it cannot be considered meaningful from this results.
The main reason seems to be the low error and noise in the estimation of the bottle
cap center in our setup. To test other scenarios with less precision and more noise, 15
more grasps were performed on Object 2 adding some uniform random noise (£1.5¢m)
to the approach vectors calculated to grasp the cap. Object 2 was selected for this extra
tests because, as can be seen in Fig. 3.20, it is has been the most problematic object
for the strategy. The results obtained after 15 task executions with both primitive
configurations is shown in Table 3.5. In this case, when the approach vectors are less
precise, is where the robustness of the reactive strategy arises.

Fig. 3.20 depicts the success rate of the whole task for each object in the test bench.
Meanwhile Fig. 3.21 shows the cap unscrewed rate. In some cases the cap unscrewed rate
is higher than the task success rate, this is because although the cap was unscrewed,
the robot failed to grasp it correctly and move it away from the object. Regarding
the elapsed time required to perform the task, Fig. 3.22 shows that, for almost all
the objects, the reactive strategy requires a bit more time. As expected, performing
corrections takes more time than moving back always to the same position.

On the other hand the same twist movements by both primitives could be expected be-
cause both of them turn the cap the same TWIST_ANGLE degrees, but as shown in Ta-
bles 3.4 and 3.5 the reactive primitive requires more twist movements to open the object.

o8

CHAPTER 3. MANIPULATION PRIMITIVES

1 T T
0.9F b
0.8F i
0.7 B
0.6 B
0.4F B
0.3F B
0.2F i

0 1 2 3 6 7 8

4 5
Object id

Task success
o
N w o w [e)} ~ [ee] [\e)

o
il

Figure 3.20: Grey: Task success rate for each test object after performing the unscrew
task 10 times per object with the reactive adaptation enabled. Green: Reactive adap-
tation disabled.

Cap unscrewed success
o

1 2 3

6 7 8

4 5
Object id
Figure 3.21: Grey: Cap unscrewed rate for each test object after performing the un-

screw task 10 times per object with the reactive adaptation enabled. Green: Reactive
adaptation disabled.

29

CONTACT DRIVEN ROBOTIC MANIPULATION

500 9

400 ‘JI‘ bl

(s)

Time

100 hl

0 I mi I I | i i I
1 2

3 4 5 6 7 8
Object id

Figure 3.22: Grey: Unscrew task elapsed time for each test object after performing the
unscrew task 10 times per object with reactive adaptation enabled. Green: Reactive
adaptation disabled.

35
30 |
25+ g
20 |
15 |
10F |

S5r i 4
0 1 mi J) ! i 1 I
1 2 3

5 6 7 8

4
Object id

Unscrew Movements

Figure 3.23: Grey: Twist movements performed for each test object after performing
the unscrew task 10 times per object with reactive adaptation enabled. Green: Reactive
adaptation disabled.

60

CHAPTER 3. MANIPULATION PRIMITIVES

Reactive Success rate Cap unscrewed rate Time Moves
No 70/80 (87.5%) 75/80 (93.8%) 156.47 8.98
Yes 71/80 (88.6%) 78/80 (97.5%) 172.42 10.06

Table 3.4: Averaged results after 80 executions of each primitive

Reactive Success rate Cap unscrewed rate Time Moves
No 9/15 (60.0%) 10/15 (66.7%) 57.5 34
Yes 12/15 (80.0%) 13/15 (86.7%) 66.9 3.77

Table 3.5: Averaged results after 15 executions of each primitive over Object 2 with
extra noise

Thus the difference in the elapsed time is caused by the highest amount of unscrew move-
ments performed by the reactive primitive. The time taken (Fig. 3.22) and the number
of movements performed (Fig. 3.23) are highly correlated. This would be expected if
each unscrew movement took the same time, but as depicted in Fig. 3.11 the twist move-
ment can be finished by other conditions, however the high correlation of time and twist
movements suggests that the twist movement always ends with the TWIST_ANGLE
condition instead of UNSCREW_TORQUE_LIMIT or FINGER_MIN_DISTANCE.

3.4.3 Emptying a box: Execution of a complex task

The purpose of this experiment is to demonstrate that the manipulation primitives
paradigm is valid for describing and executing complex sensor-based tasks. To do so,
we choose the task of emptying a box with no previous information about the number,
identity, location and pose of the objects inside.

The task, depicted in Figure 3.24, is described using the manipulation primitives pre-
sented in Section 3.2 and a task specific perceptual primitive. The primitives are laid
out in a loop that consists of pick and place sub-tasks that are repeated until there are
no objects left in the box.

Three different methods were implemented for the approach vector generation and their
impact in the task performance was measured.

Experimental setup

In order to validate the task implementation we carried out a total of 30 experiments
of emptying a box filled with five unknown objects (see Fig. 3.26(b)). As can be seen
in Figure 3.24, a key part of the task execution is the generation of the initial ap-
proach vectors. Three strategies were implemented: random blind, blind exploration and
a vision-based method. 10 experiments were performed for each approach vector gener-
ation method.

61

CONTACT DRIVEN ROBOTIC MANIPULATION

\

no objects left

Transport
Obstacles

Transport
Obstacles

4

Y

Waypoints
Velocity limits

Waypoints

success Velocity limits

success success

Place
Force threshold
Surface normal

Approach vector
generator
(blind or vision based)

Grasp
Grasp direction
Force threshold

success success

Release
hand target
position

Lift success

Heiy

object lost

success

Figure 3.24: Task definition for a pick and place task. Primitives are represented by
circles. Perceptual primitives are depicted using white boxes. Grey boxes group primi-
tives into sub-tasks. Inside each primitive, some examples of parameters are written in
italics.

To compare the performance of using different approach vector generators, different
metrics were used:

e Task success: If all the objects from the box are removed, the task execution is
considered successful.

e Grasp attempts: Every time the robot tries to grasp an object from the box, the
grasp might not be successful and the robot can fail to grasp the object. In that
case several attempts may be needed to grasp an object.

e Time: Time taken to empty the box.
Environment

The experimental environment consists of the robot in front of a table. On the table
there is a box full of objects that can be in any position, even stacked (see Fig. 3.26(b)).

Test objects

There are no assumptions about the shape, material or texture of the objects. However,
the objects play an important role on the performance of the grasping strategies, hence
it is important to have the same objects for all the tests even if they are not exactly in

62

CHAPTER 3. MANIPULATION PRIMITIVES

the same position for all the tests. For the experiment, we have selected five household
objects with different primitive and compound shapes, see Fig. 3.26(b).

Assumptions

Objects’ pose and geometry are unknown. The pose and size of the box that contains the
objects are known. The object positions inside the box are not restricted, objects can
be in any position and orientation inside the box, except that there is some clearance
between the objects and the sides of the box. The object size limits are defined by the
robot hand dimensions so that the objects fit inside the hand and are thus graspable.
The box is set on an even plane inside the arm workspace.

No further assumptions on the objects are made, except for the visual based approach
vector generator. It requires the material of the objects to be visible by the active
RGBD camera.

Parameter settings

The required parameters are: the starting approach vector to a target object and the
target position to place it. The approach vector for the grasp primitive is generated
by the approach vector generator, on the other hand the target position to perform
the place sub-task is manually set to a pose outside the box. Due to the reactive
implementation of the place primitive, objects can be placed on top of each other, the
primitive will detect the contact and place them smoothly.

Approach vector generation

e Random blind strategy: top-grasp approach vectors are generated uniformly at
random inside the known location of the box. In this case, there are no means to
determine the number of objects left in the box, instead of using a large timeout,
to save time, the end of the whole process is determined by a human supervisor.

e Blind exploration strategy: the arm moves down until a contact is detected. If the
contact is an object, the approach vector is generated over that contact location.
If the contact is the box bottom, the hand starts moving along the box until it
detects a contact using the tactile and the force-torque sensor. As the position
of the box is known, proprioception is used to determine whether the contact is
with an object or with the box bottom. The exploration trajectory followed by
the hand is shown in Fig. 3.26(a). The task ends after completing an exploration
trajectory without finding an object.

e Vision-based strategy: the Kinect sensor is used in the same fashion as in Sec 3.4.1
and 3.4.2. Objects are segmented from the environment by a pass-trough filter
using the known box boundaries and clustered as shown in Fig. 3.25. The approach
vector is determined to approach the centroid of a randomly chosen cluster from
the top. The task ends when there are no clusters left.

63

CONTACT DRIVEN ROBOTIC MANIPULATION

(a) Original 3D image. (b) Original 3D point (¢) Virtual box back- (d) Object clustering
cloud read from Kinect ground filtering. Back- and selection. Back-
Sensor. ground points are col- ground points are
ored in gray and objects marked in gray, objects
are in green. in green, and the se-
lected cluster is labeled
in red

Figure 3.25: 3D point cloud segmentation phases for the visual-based approach vector
generation.

(a) Hand preshape for exploration and ex- (b) A possible object layout
ploration trajectory.

Figure 3.26: Exploration trajectory and object layout.

64

CHAPTER 3. MANIPULATION PRIMITIVES

Method Attempts Time Task success

Random 30.5 284.1 s 100%
Exploration 32.8 334.8 s 100%
Vision 7.1 101.4 s 100%

Table 3.6: Average results for each method after 10 task executions.

Results and discussion

Table 3.6 shows the averaged results for each approach vector generation method. All
the methods were able to empty the box successfully 10 times out of 10. Regarding the
number of attempts and time consumed, the vision based method outperforms the other
two methods. However, the interesting result is that the blind methods were also able to
complete the task successfully every time. In addition, blind methods are more general
as they do not require any assumption about object material reflectivity properties.

Surprisingly, the exploration method requires almost the same attempts than the ran-
dom method, this result is related with the density of objects. The impact of object
density is depicted in Fig. 3.27 where the average number of required attempts to grasp
one object, depending on the number of objects remaining in the box is shown. When
there is only one object left (low object density) the random method requires way more
attempts. As expected, the exploration method takes more time (for a similar num-
ber of attempts) than the random method because it has to perform the exploration
trajectory for every attempt.

It is important to note that the reactive grasping primitive plays a crucial role because
the generated approach vectors are quite inaccurate, especially in the blind approaches.

3.5 Conclusion

This chapter presented the manipulation primitives framework. Starting from the idea
of action-phase controllers, provided from neuroscience studies, we have implemented
several basic action-phase controllers to form a vocabulary of basic actions that has
been used to define more complex tasks.

As the studies detailed in Chapter 2, corrective actions are also present in the human
grasping process, following this idea, we have extended the manipulation primitives
paradigm with reactive capabilities, implemented them and validated their importance.

From a practical point of view, the main contributions are threefold. 1) A robust reac-
tive grasp primitive was presented. Experiments verified that the reactive control was
able to recover successfully from significant planning errors. 2) An unscrew primitive
was also implemented and verified as well supporting the reactive control approach
already shown with the grasp primitive. 3) It was shown that the combination of sev-

65

CONTACT DRIVEN ROBOTIC MANIPULATION

241 = Blind random method
= Blind exploration method
= Vision method

22

20
18

Attempts

Objects Remaining

Figure 3.27: Average and standard deviation of required attempts depending on the
number of objects remaining. The standard deviation for the blind random method
when there is only one object left is truncated in the picture, its value is 39.32

eral manipulation primitives could be used successfully to complete a complex task,
emptying a box of unknown objects. The experimental results showed, not surprisingly,
that increased perceptual capabilities improve the performance. However, a more inter-
esting finding is that even under the worst conditions, in the blind grasping approach
with only tactile feedback, the combination of reactive primitives was usually able to
complete the task successfully, even though the time required was increased.

The results support the paradigm based on reactive manipulation primitives as a good
way to generate and execute plans in unstructured and uncertain scenarios. The ma-
nipulation primitive approach is also suitable as an abstraction layer to provide a way
to share plans, and more generally, knowledge, between different embodiments. The
results encourage us to believe that manipulation problems can be solved in complex,
unstructured scenarios while retaining hardware independence on a higher level. How-
ever, immediate feedback capabilities seem essential in coping with the complexity of
the world.

Many interesting open issues remain for the future. Firstly, the embodiment specific
primitive controllers currently require careful design for each embodiment. Procedures
which could automatically at least bootstrap the building of the controllers, or even
construct the controllers, would be very valuable. It seems that the use of machine
learning techniques would be an interesting and possibly profitable avenue of research
in this direction. This approach would most likely require high quality simulations of the

66

CHAPTER 3. MANIPULATION PRIMITIVES

embodiment in order to provide training data for the learning approaches. In Chapter 5
the available simulation tools and the implementation of dynamic simulation for robotic
manipulation is presented and discussed.

Secondly, unstructuredness and uncertainty can appear at different levels and in differ-
ent aspects. The primitives presented here are mostly related with tolerating uncertainty
in object pose and shape. In order to design primitives for other types of uncertainties
and unexpected events, other primitive designs would be necessary, and most impor-
tantly a scheme to coordinate and group different strategies, for example hierarchically,
would be necessary.

Over the years, the approaches of robot grasping have split into two groups of ap-
proaches. On one hand, object and planning based robot grasping focuses on considering
a grasp as a set of contact locations on the object shape, through which manipulation
forces are exerted on the object. On the other hand, hand and control based approaches
rely on the capabilities and constraints of the robot embodiment, focusing on control as-
pects. The proposed manipulation primitives paradigm belongs to the latter approach,
considering grasps as starting conditions for the action and letting the control loop and
the real world itself guide the execution. It is the author firm belief that the inclusion
of reactive capabilities is essential in coping with the whole scope of complexity present
in the real world.

The research and experiments presented in this chapter have been previously published.
The design of the robust grasp primitive was published in [Felip and Morales, 2009] and
it was improved and presented together with the manipulation primitives paradigm in
[Felip et al., 2012]. The empty the box experiments were presented in [Felip et al., 2013].
Finally the unscrew primitive and the related experiments were published in [Felip and
Morales, 2014].

67

