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Appendix A
Robotic platforms

Figure A.1: Tombatossals: The UJI humanoid torso.

A.1 Tombatossals. The UJI humanoid torso

The humanoid torso is composed of two arms, two hands and a head for a total of
29 DOF. Three desktop computers are used for control and processing. The robot is
depicted in Fig. A.1. This platform was built and enhanced during the development
of this thesis and has been the main platform used to perform the research and the
experiments presented through this thesis. All the chapters of this thesis have used this
platform for experimental validation.
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CONTACT DRIVEN ROBOTIC MANIPULATION
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Figure A.2: Left: PA10-7C 7 DOFs arm. Right: Arm model and joints with their angle
and speed limits.

A.1.1 The arms

Both arms are Mitsubishi PA10-7C, 7 DOF industrial manipulators with a position
repeatability of £0.1mm. Each arm weights 40Kg and has 10Kg payload. Taking into
account the hands, force sensors and tool adapters, the remaining payload is 7.2Kg
for the left hand and 7.8Kg for the right hand. Joints can be controlled in position,
velocity and effort. The joint names, limits and speed are depicted in Fig A.2. The
arms are placed in the same horizontal plane with an aperture angle of 120° (Fig. A.1).
See [Elbrechter et al., 2012] for an alternative configuration using these same arms.

A.1.2 The hands and contact sensors

Barrett Hand

It is an under-actuated 3-fingered hand with 4 actuated DOF that can be controlled
either in velocity or in position. Each finger has two coupled joints actuated by one
motor. The other DOF drives the opposition of two of the fingers. The joint angles
and actuation speed are depicted in Fig.A.3. Each finger has an integrated strain-gauge
sensor that provides the torque applied to its distal phalanx.

Schunk SDH2 Hand

It is a fully actuated 3-finger hand with 7 DOF, 2 DOF for each finger and 1 DOF to
pivot contrary-wise two of the fingers. Joint limits are £90°for each joint and 210°/s
speed. As it can be seen in Fig.A.4 the opposition of the fingers is limited to 90°. Thus,
this hand can oppose two of the fingers but cannot perform a hook grasp.
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Proximal joints
1400 @ 1409/s

Distal joints
450 @ 459/s

Finger spread
180° @ 3609/s

Figure A.3: Left: Underactuated 4 DOFs hand Barrett Hand upgraded with Weiss
Robotics tactile sensors. The distal phalanxes are modified for a better integration of
the sensors. Right: Hand model and joints with their angle and speed limits.

Finger pivot joints
90° @ 2109/s

Distal joints
+90° @ 210°/s

Proximal joints
+90° @ 210°/s

Figure A.4: Left: 7 DOFs Schunk Hand with Weiss Robotics tactile sensors. Right:
SDH2 Hand model and joints with their angle and speed limits.
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Figure A.5: Left: TO-40 pan-tilt-verge head. Right: Head model and joints with their
position and velocity limits.

Sensors

The right hand (Barrett Hand) is upgraded with Weiss Robotics® resistive tactile sensors
mounted on the palm and on the distal phalanxes. Tactile sensor pads are custom arrays
of 5x8 pressure sensors for the phalanxes and 6x14 for the palm. The distal phalanxes are
modified for a better integration of the sensors, (see Fig.A.3). The left hand (SDH2) has
Weiss Robotics tactile sensors already integrated on the proximal and distal phalanxes.
See black patches in Fig.A.4. Tactile sensors have a sampling rate up to 230Hz.

Between each hand and its arm there is a JR3? 6 axis force-torque sensor. The force-
torque sensors on each wrist provide the other modality of contact sensing, their sample
rate can be up to 200Hz.

A.1.3 The head and camera setup

The head is composed of a TO40 pan-tilt-vergence system and a Kinect . Head joints
are depicted in Fig.A.5. The TO40 is a 4 DOFs head with two DFK 31BF03-Z2 cameras.
The motorized zoom allows the control of the focal length from 5mm to 45mm. The
cameras have a resolution of 1024x768@30fps. The baseline between cameras is 27 cm.
The Kinect ' provides RGB and Depth images with a resolution of 640x480@30fps.

A.1.4 Computers

The robot sensors and actuators are connected to three different computers. The com-
puters are physically connected to each other through a Gigabit Ethernet switch. The
communication is handled by ROS, and the computer where the algorithms are running
is transparent to the programmer. However, in order to balance the load, each computer

1'Weiss Robotics sensors. http://www.weiss-robotics.de/
2JR3 Force-torque sensors. http://www.jr3.com/
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Main task Processor RAM GPU

2D Vision Intel E8400 @3.00GHz 8Gb  560GTX 1Gb
3D Vision Intel i5 650 @3.20GHz 8Gb  580GTX 1Gb
Control Intel Q9550 @2.83GHz 8Gb  9800GT 512Mb

Table A.1: Hardware specs of each computer

Head
cameras
Head
motors

Vision
To\rlnv_k:?to Control
ki : Keyboard,
\ KVM mouse,
Processing

monitors
Barrett
Hand

Figure A.6: Tombatossals computer layout. It is composed by three computers: Control,
Vision and Depth Processing.

Depth

BHand
tactile
sensors

copes with a specific task. It is important that modules that require high bandwidth
data sources (e.g. cameras, depth sensors) run on computers that have direct access to
those sources. In Fig. A.6 we show how the sensors and actuators are connected and
the role of each computer depending on the sensors that are directly available for that
computer. However, other roles such as task management or visualization do not have
a computer assigned and can be run transparently on any machine. The description of
the computers and their main tasks are shown in table A.1.
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Figure A.7: ARMAR-IIIb a humanoid robot with 43 DOF.

A.2 ARMAR IIIb

ARMAR-IIIa was designed and built in 2006 by the Karlsruhe Institute of Technology,
its design closely mimics the sensory and sensorimotor capabilities of the human.

The robot was designed to deal with a household environment and the wide variety of
objects and activities encountered in it. ARMAR-IIIa is a fully integrated autonomous
humanoid system. It has a total 43 DOF and is equipped with position, velocity and
force-torque sensors. The upper body has been designed to be modular and light-weight
while retaining similar size and proportion as an average person. For the locomotion, a
holonomic mobile platform is used. Two years later, a slightly improved humanoid robot,
ARMAR-IIIb (shown in Fig. A.7), was engineered. Detailed information about the robot
can be found in [Asfour et al., 2006, where most of the information summarized in this
section was extracted from.

This platform was used in this thesis for the research and implementation of the work
presented in Chapter 4 during the 4 month research stay at the Karlsruhe Institute of
Technology in 2012.

A.2.1 The arms

The arms are designed in an anthropomorphic way: three DOF in the shoulder, two
DOF in the elbow and two DOF in the wrist for a total of 7 DOF. The design of the
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Figure A.8: The Karlsruhe Humanoid Hand. Left: Hand model with black patches
showing the tactile sensors. Right: Hand picture.

arms is based on the observation of the motion range of a human arm. Motors can be
position, velocity and torque controlled.

A.2.2 The hands and contact sensors

Each arm is equipped with a five-fingered hand with eight actuated DOF. The hand is
under-actuated, each finger has 2 DOF and the palm another one. The thumb, index
and middle fingers have their 2 DOF actuated, the ring and pinkie are coupled and only
have 1 DOF, the last DOF controls the palm. The hand is actuated using compressed
air and valves, the position of the actuated joints can be controlled using the feedback
provided by the joint encoders. However, when grasping objects or applying forces to
the environment with the fingers the exact position cannot be determined only by the
encoders.

Sensors

For tactile feedback during manipulation operations, a former version of the Weiss
tactile sensors mounted on Tombatossals’ Barrett Hand are used in ARMAR-IIIb. The
sensors are mounted on the distal phalanxes of each finger and on the palm as depicted
in Fig. A.8. The detailed description of the tactile sensors developed for the robotic
hand was published in [Kerpa et al., 2003], however the sensors were improved and the
first commercial version was provided by Weiss Robotics GmbH & Co.KG3. Nowadays,
these sensors have evolved and are used in many robotics applications in industry and
research. In the wrist, 6D force/torque sensors from ATI Industrial Automation? are
used.

3Weiss Robotics GmbH & Co.KG: http://www.weiss-robotics.de/en/
4ATI Industrial Automation: www.ati-ia.com

189



CONTACT DRIVEN ROBOTIC MANIPULATION

Figure A.9: The Karlsruhe Humanoid Head.

A.2.3 The head and camera setup

ARMAR-IIIb uses a Karlsruhe humanoid head. It possesses two cameras per eye with
a wide-angle lens for peripheral vision and a narrow-angle lens for foveated vision. It
has a total number of 7 DOF (4 in the neck and 3 in the eyes), six microphones and
a 6D inertial sensor. Throughout Europe, there are already ten copies of this head in
use. The details about the head mechanism, sensors and control are provided in [Asfour
et al., 2008].

A.2.4 Computers

There are five computers inside the robot that are devoted to different tasks. The com-
puters are separated in a three layered architecture: task execution, task coordination
and task planning. Each computer has different roles assigned, audio processing and
synthesis, visual perception, platform control and navigation, coordination, position and
torque motor control. The computer layout is the same as detailed in [Asfour et al.,
2008] but the computers have been recently updated to Intel i5 processors for powerful
onboard computational capabilities.

The computers are running under Linux, with the Real Time Application Interface
RTAI/LXRT-Linux. They are interconnected through a gigabit ethernet network. For
the implementation of the control architecture and interprocess communications, the
MCA2® framework is used.

SMCAZ2: http://www.mca2.org/
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Figure A.10: Industrial manipulator setup composed of a 6DOF Mitsubishi Melfa RV-
3SB 6DOF industrial manipulator and a Schunk PG70 2-Finger Parallel Gripper.

A.3 Mitsubishi Melfa RV-3SB arm

The robotic setup available at the Lappeenranta University of Technology (LUT), con-
sists of a 6DOF Mitsubishi Melfa RV-3SB industrial manipulator and a WRT-102 grip-
per from Weiss Robotics, see Fig. A.10.

The Melfa RV-3SB is an industrial manipulator with 3Kg payload and a position re-
peatability of £0.02mm. It weights 37Kg and the speed of motion of the joints varies
from 187 to 660 degrees per second depending on the joint. The WRT-102 gripper is
based on the PG-70 2-Finger Parallel Gripper from Schunk but has tactile sensors on
both fingers. Between the gripper and the arm there is a 6DOF JR3 force-torque sensor.

This platform was used for the embodiment abstraction experiments performed in Chap-
ter 7 as one of the results of the GRASP Project funded by the European Commission
under the FP7 programme.
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Figure A.11: Baxter collaborative robot.

A.4 Baxter

Baxter is a commercial compliant low-cost manipulator torso manufactured by Rethink
Robotics. It features a dual-arm configuration very similar to Tombatossals. With a
total weight of 138.79 Kg. This platform was used for the software architecture im-
plementation presented in Chapter 6 and the participation in the APC 2015 by the
RobInLab team.

A.4.1 The arms

The arms of Baxter (see Fig. A.12) weigh 21.3 Kg, have 7TDOF and a payload of 2.2 Kg
already taking into consideration the grippers included with the robot. Although, the
manufacturer does not provide information about its position repeatability, it is well
known that Baxter’s arms are not precision manipulators, some users of the robot have
reported that its repeatability is around +3mm. The arms are compliant and they have
a safety mechanism that automatically loosens the arms when the perceived external
force is over a certain limit. The joints can be controlled in position, velocity or torque.

A.4.2 The grippers

The gripper provided by the manufacturer has a very small range of movement and
cannot grasp the wide variety of objects that are present in household scenarios. Given
the 2.2Kg payload of the arms, using a commercial hand such as SDH2 or Barrett Hand,
is not an option as they weigh around 2Kg. Inspired by the Festo Fin Ray gripper®, we
have developed our own low-cost and light-weight gripper for Baxter, see Fig. A.13.

SFesto Fin Ray gripper: https://www.festo.com/cms/en_corp/9779.htm
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Figure A.12: Left: Baxter robotic arm. Right: Baxter robotic arm model and joints.

Sensors

The controller of the arms provides a virtual 6D force-torque sensor using the computed
external forces at the end effector. Although the measurements are very noisy and not
accurate, they are useful enough for contact detection and safety corrections. In each
end effector there is an embedded fisheye camera that provides up to 1280x800 images
at 30Hz and a IR range sensor.

A.4.3 Head and camera setup

The head consists of a screen attached to a pan and tilt mechanism. The pan joint
angle can be controlled, however the tilt joint has only two positions, up and down.
The screen has an integrated fisheye camera. On top of the head there is a ring of sonar
distance sensors that are used to detect the presence of people in the vicinity, the robot
head is depicted in Fig. A.14. In order to enhance the robot perceptual capabilities and
be able to explore all the bins of the APC shelf, we developed a kinect adapter for the
robot elbow.

A.4.4 Computers

The Baxter robot has an embedded computer with a 3rd Gen Intel Core i7-3770 Pro-
cessor. It can work standalone but for research and more demanding applications it
can be connected to an external network with a Gigabit Ethernet cable. The robot is
controlled natively using ROS, thus a computer network like the one used for Tombat-
ossals or ARMAR-IIIb can be easily set-up and used to distribute the computational
expensive modules over different computers.
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Figure A.13: Low-cost light-weight adaptive grippers for Baxter, developed for the Ama-
zon Picking Challenge by the RobInLab team.

Figure A.14: Left: Baxter’s pan-nod head. Mounted on the pan-nod mechanism there is
a screen with a camera. On top of the head there is an array of sonar distance sensors.
Right: Baxter head model and controllable pan joint.
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Appendix B
Robot spherical modelling

A geometric model of the robot can be used to reason about the space occupied by
it and estimate contacts with objects. It is also a very useful tool to segment out the
robot from an image or from a point cloud.

To model a robot, a model based in bounding volume primitives, can be used. For
the model presented here, the spherically extended polytopes (s-topes) are used. This
representation has been widely used [Tornero et al., 1991, del Pobil and Serna, 1995,
Gilbert et al., 1988] because of its efficiency in distance computation, specifically in
collision detection and path planning. An s-tope [Hamlin et al., 1992] is the convex hull
of a finite set of spheres s = (¢, 1), where c is the centre and r its radius. Given the set
of n spheres S = {sq, $1, ..., Sp }, the convex hull of such a set, S, contains an infinite
set of swept spheres expressed by Eq. B.1. Where ); is the parameter that determines
a specific sphere, radius and centre, of the whole set of spheres.

SSZ {SZSZSQ—FZ)\Z‘(SZ‘—S()),SZ' GS,)\ZEO,Z)\Z S 1} (Bl)

1=0 i=0

(a) s-tope with two spheres, bi-sphere (b) s-tope with three spheres, tri-sphere

Figure B.1: Examples of simple s-topes: bi-spheres and tri-spheres
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(a) Shunk Dextrous Hand (b) SDH spherical model (c) Spherical model of our robotic
(SDH) system

Figure B.2: Spherical model of hand and robot

To illustrate the previous equation, Figure B.1 depicts several examples of s-topes de-
fined by two (bi-spheres) and three spheres (tri-spheres).

We have modelled our robot as a combination of s-topes. Each link is represented
as a bi-sphere and some static parts (i.e. hand palm) as single spheres. In addition,
each defining sphere has been attached to the corresponding frame of the kinematic
chain. Figure B.2(c) depicts the complete model of our robot manipulator system and
Figure B.2(b) illustrates a detail with the model of our three-fingered hand.

The distance of a point to the spherical model is calculated as the minimum distance
from the point to all the s-topes that compose the robot model. Since our geometric
model is composed only of spheres and bi-spheres, we need to apply only two rules to
compute each distance. For a single sphere, the distance between a point p; and the
sphere s = (¢, r) is computed using Eq.B.2, where ¢ is the centre and r the radius:

distance = ||p; — c|| —r (B.2)

The distance between a point p; and a bi-sphere is calculated as follows: first we need to
determine the closest sphere center to the point among the infinite number which define
the bi-sphere. Given a bi-sphere defined by the spheres s; = (¢1,71) and s9 = (c2,72),
Eq. B.3 defines the rule to find the closest sphere Syin = (Comin, Tmin) to pi. If A < 0 the
first sphere is used. Then, Eq. B.2 can be used to compute the distance.

196



CHAPTER B. ROBOT SPHERICAL MODELLING

(01 —Pi) ) (02 2— Cl); Apir, € [0’ 1]
l|ca — e

Cmin = Di — €1 + Amin(c2 — ¢1)

Tmin =Pi — 71+ )\min(TZ - Tl)

)\min -

197






Acronyms

ATP Anterior Intraparietal Sulcus. 160, 164

ANNSs Artificial Neural Networks. 146

AOS Axis Orientation Selective. 164, 167, 172-176

APC Amazon Picking Challenge. 2, 5, 140, 194, Glossary: Amazon Picking Challenge
API Application Programming Interface. 103

AVs Approach Vectors. 135, 138

BSD Berkeley Software Distribution. 103, Glossary: BSD

CCG Combinatory Categorical Grammar. 147

CIP Caudal Intraparietal Sulcus. 162, 164, 172

CNS Central Nervous System. 18

COLLADA COLLAborative Design Activity. 103, Glossary: COLLADA

DMP Dynamic Movement Primitive (DMP). 30
DOF Degrees of Freedom (DOF). 4
DRC DARPA Robotics Challenge. 4, Glossary: DARPA Robotics Challenge

GPL General Public License. 103, Glossary: GPL
HMMs Hidden Markov Models. 146

ICP Iterative Closest Point. 81, 82

LOC Lateral-Occipital Complex. 161-165

MLS Minimum Least Square. 174
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ND Normal Density. 174, 175
NM Nearest Mean. 174

ODE Open Dynamics Engine. 105
OGM Occupancy Grid Map. 79, 81, 82
OMPL Open Motion Planning Library. 134

PbD Programming by demonstration. 146
PCA Principal Component Analysis. 11, 135

RBFs Radial Basis Functions. 146
ROI Region Of Interest. 134
ROS Robot Operating System. 105, 106, 125, 126, Glossary: ROS

SOS Surface Orientation Selective. 164, 167, 172-176

V1 Primary Visual Cortex. 161, Glossary: V1

V2 Secondary Visual Cortex. 162, Glossary: V2

V3 Third Visual Complex. 162, 163, Glossary: V3
V4 Visual Area V4. 162, 163, 165, 166, Glossary: V4

YAML YAML Ain’t Markup Language. 130
YARP Yet Another Robot Platform. 125
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Glossary

action-phase controllers object manipulation tasks typically involve a series of ac-
tion phases in which objects are grasped, moved, brought into contact with other
objects and released. Each phase accomplishes a specific goal or subgoal of the
task. 16

Amazon Picking Challenge a robotic grasping competition organized by Amazon.
The robots, being in front of a shelf, like the ones used in Amazon warehouses,
had to autonomously grasp a set of objects and place them into an order bin. The
robot is given a file with a list of the target objects and it has to autonomously
search, pick and place them into the order bin. There is a scoring system based on
the number of objects retrieved, penalty points are received if the wrong object is
picked or for each object dropped. More information about the rules and the past
edition of the contest can be found at http://amazonpickingchallenge.org/.
2, 201

Biomimicry a field of study that not only takes inspiration from nature but replicates
the mechanisms that the evolution has designed in order to provide solutions and
improvements to current problems. 3

BSD a family of permissive free software licenses, imposing minimal restrictions on
the redistribution of covered software. 103, 201

collaborative robotics a branch of industrial robotics where compliant robots are
used to work shoulder to shoulder with humans. This robots are more failure
tolerant and robust to environment changes and have the ability of dealing with
a determined amount of uncertainty. 1

COLLADA defines an XML Namespace and database schema to make it easy to
transport 3D assets between applications without loss of information, enabling
diverse 3D authoring and processing tools to be combined into a content produc-
tion pipeline. 103, 201

DARPA Robotics Challenge a competition of robot systems and software teams
vying to develop robots capable of assisting humans in responding to natu-
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ral and man-made disasters. More information can be found at http://www.
theroboticschallenge.org/. 4, 201

FAI type I fast adaptation mechanoreceptors, a.k.a. Meissner corpuscles. Respond to
stimulation with a burst of firing at the beginning and end of stimulation. Their
receptive field is small and are located in the Dermis (just below the epidermis).
Better respond to rubbing against the skin or skin movement across a surface. 14

FAII type II fast adaptation mechanoreceptors, a.k.a. Pacinian corpuscles. Respond to
stimulation with a burst of firing at the beginning and end of stimulation. Their
receptive field is large and are located in the Dermis (deep in subcutaneous fat).
Better respond to non uniform stimulation like vibrations. 14

GPL the GNU General Public License is a free, copyleft license for software and other
kinds of works. 103, 201

grip force force applied perpendicular to the fingertip surfaces. 18, 20

load force force applied tangential to the fingertip surfaces in order to lift a grasped
object. 20

manipulation primitive a reactive controller, designed to perform a specific primi-
tive action on a particular embodiment. 24

micro-neurography a neurophysiological method employed by scientists to visualize
and record the normal traffic of nerve impulses that are conducted in peripheral
nerves of waking human subjects. 12, 14

Open source refers to a computer program in which the source code is available to
the general public for use and/or modification from its original design. 103

ROS a middleware that provides a message passing framework among other features.
Its developers community provide a set of open source software libraries and tools
oriented for robot applications. 105, 202

safety margin when grasping an object, the difference between the grip force and the
slip force. The slip force is the minimum force applied before the object starts
slipping. 18

simple tactile reaction time time of reaction to a tactile stimulus in the absence of
any cognitive demand of the subject. 17
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V1 aregion of the functional model of the brain in charge of edge detection and global
organisation of the scene. As information is further relayed to subsequent visual
areas, it is coded as increasingly non-local frequency/phase signals. 161, 202

V2 a region of the functional model of the brain sensitive to orientation, spatial fre-
quency, and color. 162, 202

V3 a ventral stream region of the functional model of the brain in charge of color
extraction, shading and 2D orientation features. 162, 202

V4 a ventral stream region of the functional model of the brain, it is devoted to use the
information extracted by V3 and produce viewpoint invariant data of the objects.
162, 202

YAML is a human friendly data serialization standard for all programming languages.
130, 202

YARP a robot middleware that supports building a robot control system as a collec-
tion of programs communicating in a peer-to-peer way, with an extensible family
of connection types (tcp, udp, multicast, local, MPI, mjpg-over-http, XML/RPC,
tepros, ...) that can be swapped in and out. It also supports flexible interfacing
with hardware devices. 125, 202
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