Appendices

Appendix A

Robotic platforms



Figure A.1: Tombatossals: The UJI humanoid torso.

A.1 Tombatossals. The UJI humanoid torso

The humanoid torso is composed of two arms, two hands and a head for a total of 29 DOF. Three desktop computers are used for control and processing. The robot is depicted in Fig. A.1. This platform was built and enhanced during the development of this thesis and has been the main platform used to perform the research and the experiments presented through this thesis. All the chapters of this thesis have used this platform for experimental validation.

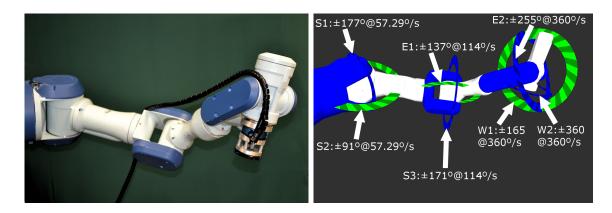


Figure A.2: Left: PA10-7C 7 DOFs arm. Right: Arm model and joints with their angle and speed limits.

A.1.1 The arms

Both arms are Mitsubishi PA10-7C, 7 DOF industrial manipulators with a position repeatability of ± 0.1 mm. Each arm weights 40Kg and has 10Kg payload. Taking into account the hands, force sensors and tool adapters, the remaining payload is 7.2Kg for the left hand and 7.8Kg for the right hand. Joints can be controlled in position, velocity and effort. The joint names, limits and speed are depicted in Fig A.2. The arms are placed in the same horizontal plane with an aperture angle of 120° (Fig. A.1). See [Elbrechter et al., 2012] for an alternative configuration using these same arms.

A.1.2 The hands and contact sensors

Barrett Hand

It is an under-actuated 3-fingered hand with 4 actuated DOF that can be controlled either in velocity or in position. Each finger has two coupled joints actuated by one motor. The other DOF drives the opposition of two of the fingers. The joint angles and actuation speed are depicted in Fig.A.3. Each finger has an integrated strain-gauge sensor that provides the torque applied to its distal phalanx.

Schunk SDH2 Hand

It is a fully actuated 3-finger hand with 7 DOF, 2 DOF for each finger and 1 DOF to pivot contrary-wise two of the fingers. Joint limits are $\pm 90^{\circ}$ for each joint and 210° /s speed. As it can be seen in Fig.A.4 the opposition of the fingers is limited to 90° . Thus, this hand can oppose two of the fingers but cannot perform a hook grasp.

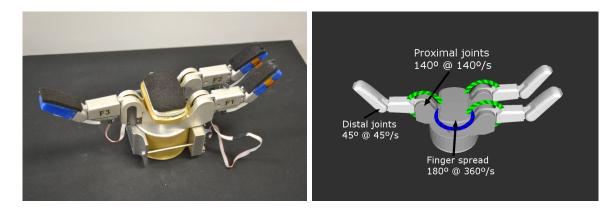


Figure A.3: Left: Underactuated 4 DOFs hand Barrett Hand upgraded with Weiss Robotics tactile sensors. The distal phalanxes are modified for a better integration of the sensors. Right: Hand model and joints with their angle and speed limits.

Figure A.4: Left: 7 DOFs Schunk Hand with Weiss Robotics tactile sensors. Right: SDH2 Hand model and joints with their angle and speed limits.

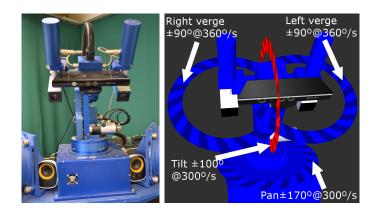


Figure A.5: Left: TO-40 pan-tilt-verge head. Right: Head model and joints with their position and velocity limits.

Sensors

The right hand (Barrett Hand) is upgraded with Weiss Robotics¹ resistive tactile sensors mounted on the palm and on the distal phalanxes. Tactile sensor pads are custom arrays of 5x8 pressure sensors for the phalanxes and 6x14 for the palm. The distal phalanxes are modified for a better integration of the sensors, (see Fig.A.3). The left hand (SDH2) has Weiss Robotics tactile sensors already integrated on the proximal and distal phalanxes. See black patches in Fig.A.4. Tactile sensors have a sampling rate up to 230Hz.

Between each hand and its arm there is a JR3² 6 axis force-torque sensor. The force-torque sensors on each wrist provide the other modality of contact sensing, their sample rate can be up to 200Hz.

A.1.3 The head and camera setup

The head is composed of a TO40 pan-tilt-vergence system and a KinectTM. Head joints are depicted in Fig.A.5. The TO40 is a 4 DOFs head with two DFK 31BF03-Z2 cameras. The motorized zoom allows the control of the focal length from 5mm to 45mm. The cameras have a resolution of 1024x768@30fps. The baseline between cameras is 27 cm. The KinectTM provides RGB and Depth images with a resolution of 640x480@30fps.

A.1.4 Computers

The robot sensors and actuators are connected to three different computers. The computers are physically connected to each other through a Gigabit Ethernet switch. The communication is handled by ROS, and the computer where the algorithms are running is transparent to the programmer. However, in order to balance the load, each computer

¹Weiss Robotics sensors. http://www.weiss-robotics.de/

²JR3 Force-torque sensors. http://www.jr3.com/

CHAPTER A. ROBOTIC PLATFORMS

Main task	Processor	RAM	GPU
2D Vision	Intel E8400 @3.00GHz	8Gb	560GTX 1Gb
3D Vision	Intel i 5 650 @3.20 GHz	8Gb	$580 \mathrm{GTX} \ 1 \mathrm{Gb}$
Control	Intel Q9550 @2.83GHz	8Gb	$9800GT\ 512Mb$

Table A.1: Hardware specs of each computer

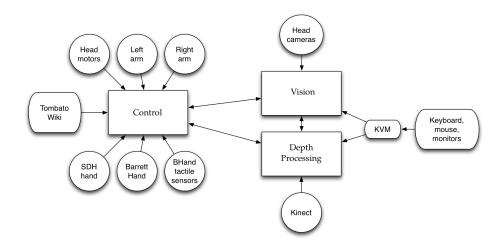


Figure A.6: Tombatossals computer layout. It is composed by three computers: Control, Vision and Depth Processing.

copes with a specific task. It is important that modules that require high bandwidth data sources (e.g. cameras, depth sensors) run on computers that have direct access to those sources. In Fig. A.6 we show how the sensors and actuators are connected and the role of each computer depending on the sensors that are directly available for that computer. However, other roles such as task management or visualization do not have a computer assigned and can be run transparently on any machine. The description of the computers and their main tasks are shown in table A.1.

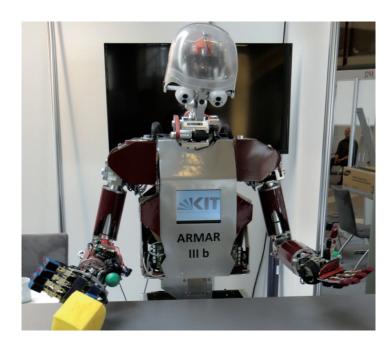


Figure A.7: ARMAR-IIIb a humanoid robot with 43 DOF.

A.2 ARMAR IIIb

ARMAR-IIIa was designed and built in 2006 by the Karlsruhe Institute of Technology, its design closely mimics the sensory and sensorimotor capabilities of the human.

The robot was designed to deal with a household environment and the wide variety of objects and activities encountered in it. ARMAR-IIIa is a fully integrated autonomous humanoid system. It has a total 43 DOF and is equipped with position, velocity and force-torque sensors. The upper body has been designed to be modular and light-weight while retaining similar size and proportion as an average person. For the locomotion, a holonomic mobile platform is used. Two years later, a slightly improved humanoid robot, ARMAR-IIIb (shown in Fig. A.7), was engineered. Detailed information about the robot can be found in [Asfour et al., 2006], where most of the information summarized in this section was extracted from.

This platform was used in this thesis for the research and implementation of the work presented in Chapter 4 during the 4 month research stay at the Karlsruhe Institute of Technology in 2012.

A.2.1 The arms

The arms are designed in an anthropomorphic way: three DOF in the shoulder, two DOF in the elbow and two DOF in the wrist for a total of 7 DOF. The design of the

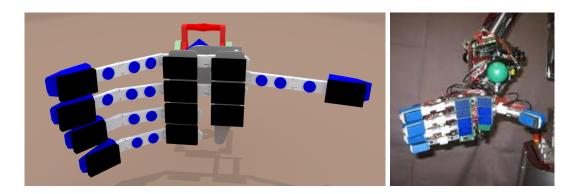


Figure A.8: The Karlsruhe Humanoid Hand. Left: Hand model with black patches showing the tactile sensors. Right: Hand picture.

arms is based on the observation of the motion range of a human arm. Motors can be position, velocity and torque controlled.

A.2.2 The hands and contact sensors

Each arm is equipped with a five-fingered hand with eight actuated DOF. The hand is under-actuated, each finger has 2 DOF and the palm another one. The thumb, index and middle fingers have their 2 DOF actuated, the ring and pinkie are coupled and only have 1 DOF, the last DOF controls the palm. The hand is actuated using compressed air and valves, the position of the actuated joints can be controlled using the feedback provided by the joint encoders. However, when grasping objects or applying forces to the environment with the fingers the exact position cannot be determined only by the encoders.

Sensors

For tactile feedback during manipulation operations, a former version of the Weiss tactile sensors mounted on Tombatossals' Barrett Hand are used in ARMAR-IIIb. The sensors are mounted on the distal phalanxes of each finger and on the palm as depicted in Fig. A.8. The detailed description of the tactile sensors developed for the robotic hand was published in [Kerpa et al., 2003], however the sensors were improved and the first commercial version was provided by Weiss Robotics GmbH & Co.KG³. Nowadays, these sensors have evolved and are used in many robotics applications in industry and research. In the wrist, 6D force/torque sensors from ATI Industrial Automation⁴ are used.

³Weiss Robotics GmbH & Co.KG: http://www.weiss-robotics.de/en/

⁴ATI Industrial Automation: www.ati-ia.com

Figure A.9: The Karlsruhe Humanoid Head.

A.2.3 The head and camera setup

ARMAR-IIIb uses a Karlsruhe humanoid head. It possesses two cameras per eye with a wide-angle lens for peripheral vision and a narrow-angle lens for foveated vision. It has a total number of 7 DOF (4 in the neck and 3 in the eyes), six microphones and a 6D inertial sensor. Throughout Europe, there are already ten copies of this head in use. The details about the head mechanism, sensors and control are provided in [Asfour et al., 2008].

A.2.4 Computers

There are five computers inside the robot that are devoted to different tasks. The computers are separated in a three layered architecture: task execution, task coordination and task planning. Each computer has different roles assigned, audio processing and synthesis, visual perception, platform control and navigation, coordination, position and torque motor control. The computer layout is the same as detailed in [Asfour et al., 2008] but the computers have been recently updated to Intel i5 processors for powerful onboard computational capabilities.

The computers are running under Linux, with the Real Time Application Interface RTAI/LXRT-Linux. They are interconnected through a gigabit ethernet network. For the implementation of the control architecture and interprocess communications, the MCA2⁵ framework is used.

⁵MCA2: http://www.mca2.org/

CHAPTER A. ROBOTIC PLATFORMS

Figure A.10: Industrial manipulator setup composed of a 6DOF Mitsubishi Melfa RV-3SB 6DOF industrial manipulator and a Schunk PG70 2-Finger Parallel Gripper.

A.3 Mitsubishi Melfa RV-3SB arm

The robotic setup available at the Lappeenranta University of Technology (LUT), consists of a 6DOF Mitsubishi Melfa RV-3SB industrial manipulator and a WRT-102 gripper from Weiss Robotics, see Fig. A.10.

The Melfa RV-3SB is an industrial manipulator with 3Kg payload and a position repeatability of ± 0.02 mm. It weights 37Kg and the speed of motion of the joints varies from 187 to 660 degrees per second depending on the joint. The WRT-102 gripper is based on the PG-70 2-Finger Parallel Gripper from Schunk but has tactile sensors on both fingers. Between the gripper and the arm there is a 6DOF JR3 force-torque sensor.

This platform was used for the embodiment abstraction experiments performed in Chapter 7 as one of the results of the GRASP Project funded by the European Commission under the FP7 programme.

Figure A.11: Baxter collaborative robot.

A.4 Baxter

Baxter is a commercial compliant low-cost manipulator torso manufactured by Rethink Robotics. It features a dual-arm configuration very similar to Tombatossals. With a total weight of 138.79 Kg. This platform was used for the software architecture implementation presented in Chapter 6 and the participation in the APC 2015 by the RobInLab team.

A.4.1 The arms

The arms of Baxter (see Fig. A.12) weigh 21.3 Kg, have 7DOF and a payload of 2.2 Kg already taking into consideration the grippers included with the robot. Although, the manufacturer does not provide information about its position repeatability, it is well known that Baxter's arms are not precision manipulators, some users of the robot have reported that its repeatability is around ± 3 mm. The arms are compliant and they have a safety mechanism that automatically loosens the arms when the perceived external force is over a certain limit. The joints can be controlled in position, velocity or torque.

A.4.2 The grippers

The gripper provided by the manufacturer has a very small range of movement and cannot grasp the wide variety of objects that are present in household scenarios. Given the 2.2Kg payload of the arms, using a commercial hand such as SDH2 or Barrett Hand, is not an option as they weigh around 2Kg. Inspired by the Festo Fin Ray gripper⁶, we have developed our own low-cost and light-weight gripper for Baxter, see Fig. A.13.

⁶Festo Fin Ray gripper: https://www.festo.com/cms/en_corp/9779.htm

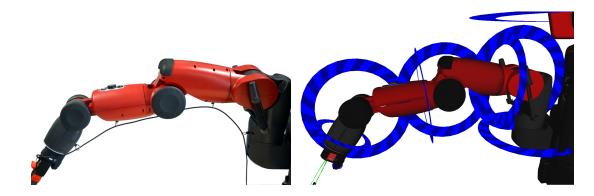


Figure A.12: Left: Baxter robotic arm. Right: Baxter robotic arm model and joints.

Sensors

The controller of the arms provides a virtual 6D force-torque sensor using the computed external forces at the end effector. Although the measurements are very noisy and not accurate, they are useful enough for contact detection and safety corrections. In each end effector there is an embedded fisheye camera that provides up to 1280x800 images at 30Hz and a IR range sensor.

A.4.3 Head and camera setup

The head consists of a screen attached to a pan and tilt mechanism. The pan joint angle can be controlled, however the tilt joint has only two positions, up and down. The screen has an integrated fisheye camera. On top of the head there is a ring of sonar distance sensors that are used to detect the presence of people in the vicinity, the robot head is depicted in Fig. A.14. In order to enhance the robot perceptual capabilities and be able to explore all the bins of the APC shelf, we developed a kinect adapter for the robot elbow.

A.4.4 Computers

The Baxter robot has an embedded computer with a 3rd Gen Intel Core i7-3770 Processor. It can work standalone but for research and more demanding applications it can be connected to an external network with a Gigabit Ethernet cable. The robot is controlled natively using ROS, thus a computer network like the one used for Tombatossals or ARMAR-IIIb can be easily set-up and used to distribute the computational expensive modules over different computers.

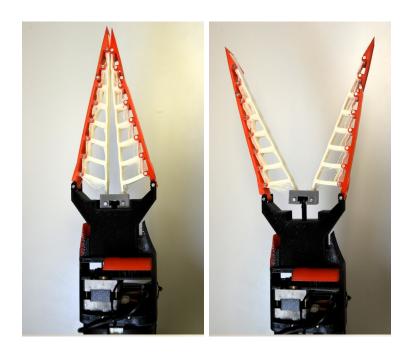


Figure A.13: Low-cost light-weight adaptive grippers for Baxter, developed for the Amazon Picking Challenge by the RobInLab team.

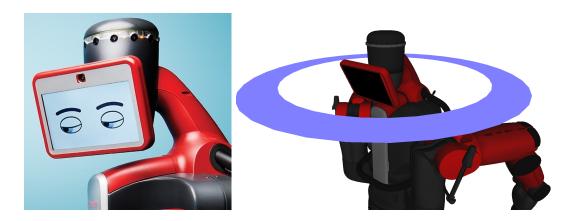


Figure A.14: Left: Baxter's pan-nod head. Mounted on the pan-nod mechanism there is a screen with a camera. On top of the head there is an array of sonar distance sensors. Right: Baxter head model and controllable pan joint.

Appendix B

Robot spherical modelling

A geometric model of the robot can be used to reason about the space occupied by it and estimate contacts with objects. It is also a very useful tool to segment out the robot from an image or from a point cloud.

To model a robot, a model based in bounding volume primitives, can be used. For the model presented here, the spherically extended polytopes (s-topes) are used. This representation has been widely used [Tornero et al., 1991, del Pobil and Serna, 1995, Gilbert et al., 1988] because of its efficiency in distance computation, specifically in collision detection and path planning. An s-tope [Hamlin et al., 1992] is the convex hull of a finite set of spheres $s \equiv (c, r)$, where c is the centre and r its radius. Given the set of n spheres $S = \{s_0, s_1, ..., s_n\}$, the convex hull of such a set, S_s , contains an infinite set of swept spheres expressed by Eq. B.1. Where λ_i is the parameter that determines a specific sphere, radius and centre, of the whole set of spheres.

$$S_s = \left\{ s : s = s_0 + \sum_{i=0}^n \lambda_i (s_i - s_0), s_i \in S, \lambda_i \ge 0, \sum_{i=0}^n \lambda_i \le 1 \right\}$$
 (B.1)

- (a) s-tope with two spheres, bi-sphere
- (b) s-tope with three spheres, tri-sphere

Figure B.1: Examples of simple s-topes: bi-spheres and tri-spheres

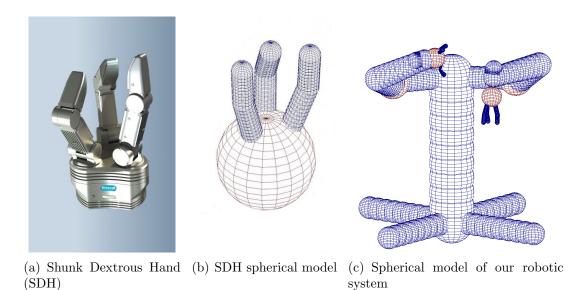


Figure B.2: Spherical model of hand and robot

To illustrate the previous equation, Figure B.1 depicts several examples of s-topes defined by two (bi-spheres) and three spheres (tri-spheres).

We have modelled our robot as a combination of s-topes. Each link is represented as a bi-sphere and some static parts (i.e. hand palm) as single spheres. In addition, each defining sphere has been attached to the corresponding frame of the kinematic chain. Figure B.2(c) depicts the complete model of our robot manipulator system and Figure B.2(b) illustrates a detail with the model of our three-fingered hand.

The distance of a point to the spherical model is calculated as the minimum distance from the point to all the s-topes that compose the robot model. Since our geometric model is composed only of spheres and bi-spheres, we need to apply only two rules to compute each distance. For a single sphere, the distance between a point p_i and the sphere $s \equiv (c, r)$ is computed using Eq.B.2, where c is the centre and r the radius:

$$distance = ||p_i - c|| - r \tag{B.2}$$

The distance between a point p_i and a bi-sphere is calculated as follows: first we need to determine the closest sphere center to the point among the infinite number which define the bi-sphere. Given a bi-sphere defined by the spheres $s_1 \equiv (c_1, r_1)$ and $s_2 \equiv (c_2, r_2)$, Eq. B.3 defines the rule to find the closest sphere $s_{min} \equiv (c_{min}, r_{min})$ to p_i . If $\lambda < 0$ the first sphere is used. Then, Eq. B.2 can be used to compute the distance.

CHAPTER B. ROBOT SPHERICAL MODELLING

$$\lambda_{min} = -\frac{(c_1 - p_i) \cdot (c_2 - c_1)}{\|c_2 - c_1\|^2}; \quad \lambda_{min} \in [0, 1]$$

$$c_{min} = p_i - c_1 + \lambda_{min}(c_2 - c_1)$$

$$r_{min} = p_i - r_1 + \lambda_{min}(r_2 - r_1)$$
(B.3)

Acronyms

AIP Anterior Intraparietal Sulcus. 160, 164

ANNs Artificial Neural Networks. 146

AOS Axis Orientation Selective. 164, 167, 172–176

APC Amazon Picking Challenge. 2, 5, 140, 194, Glossary: Amazon Picking Challenge

API Application Programming Interface. 103

AVs Approach Vectors. 135, 138

BSD Berkeley Software Distribution. 103, Glossary: BSD

CCG Combinatory Categorical Grammar. 147

CIP Caudal Intraparietal Sulcus. 162, 164, 172

CNS Central Nervous System. 18

COLLADA COLLAborative Design Activity. 103, Glossary: COLLADA

DMP Dynamic Movement Primitive (DMP). 30

DOF Degrees of Freedom (DOF). 4

DRC DARPA Robotics Challenge. 4, Glossary: DARPA Robotics Challenge

GPL General Public License. 103, Glossary: GPL

HMMs Hidden Markov Models. 146

ICP Iterative Closest Point. 81, 82

LOC Lateral-Occipital Complex. 161–165

MLS Minimum Least Square. 174

CONTACT DRIVEN ROBOTIC MANIPULATION

ND Normal Density. 174, 175

NM Nearest Mean. 174

ODE Open Dynamics Engine. 105

OGM Occupancy Grid Map. 79, 81, 82

OMPL Open Motion Planning Library. 134

PbD Programming by demonstration. 146

PCA Principal Component Analysis. 11, 135

RBFs Radial Basis Functions. 146

ROI Region Of Interest. 134

ROS Robot Operating System. 105, 106, 125, 126, Glossary: ROS

SOS Surface Orientation Selective. 164, 167, 172–176

V1 Primary Visual Cortex. 161, Glossary: V1

V2 Secondary Visual Cortex. 162, Glossary: V2

V3 Third Visual Complex. 162, 163, Glossary: V3

V4 Visual Area V4. 162, 163, 165, 166, Glossary: V4

YAML YAML Ain't Markup Language. 130

YARP Yet Another Robot Platform. 125

Glossary

- action-phase controllers object manipulation tasks typically involve a series of action phases in which objects are grasped, moved, brought into contact with other objects and released. Each phase accomplishes a specific goal or subgoal of the task. 16
- Amazon Picking Challenge a robotic grasping competition organized by Amazon. The robots, being in front of a shelf, like the ones used in Amazon warehouses, had to autonomously grasp a set of objects and place them into an order bin. The robot is given a file with a list of the target objects and it has to autonomously search, pick and place them into the order bin. There is a scoring system based on the number of objects retrieved, penalty points are received if the wrong object is picked or for each object dropped. More information about the rules and the past edition of the contest can be found at http://amazonpickingchallenge.org/. 2, 201
- **Biomimicry** a field of study that not only takes inspiration from nature but replicates the mechanisms that the evolution has designed in order to provide solutions and improvements to current problems. 3
- **BSD** a family of permissive free software licenses, imposing minimal restrictions on the redistribution of covered software. 103, 201
- **collaborative robotics** a branch of industrial robotics where compliant robots are used to work shoulder to shoulder with humans. This robots are more failure tolerant and robust to environment changes and have the ability of dealing with a determined amount of uncertainty. 1
- COLLADA defines an XML Namespace and database schema to make it easy to transport 3D assets between applications without loss of information, enabling diverse 3D authoring and processing tools to be combined into a content production pipeline. 103, 201
- **DARPA Robotics Challenge** a competition of robot systems and software teams vying to develop robots capable of assisting humans in responding to natu-

- ral and man-made disasters. More information can be found at http://www.theroboticschallenge.org/. 4, 201
- **FAI** type I fast adaptation mechanoreceptors, a.k.a. Meissner corpuscles. Respond to stimulation with a burst of firing at the beginning and end of stimulation. Their receptive field is small and are located in the Dermis (just below the epidermis). Better respond to rubbing against the skin or skin movement across a surface. 14
- **FAII** type II fast adaptation mechanoreceptors, a.k.a. Pacinian corpuscles. Respond to stimulation with a burst of firing at the beginning and end of stimulation. Their receptive field is large and are located in the Dermis (deep in subcutaneous fat). Better respond to non uniform stimulation like vibrations. 14
- **GPL** the GNU General Public License is a free, copyleft license for software and other kinds of works. 103, 201
- grip force force applied perpendicular to the fingertip surfaces. 18, 20
- load force force applied tangential to the fingertip surfaces in order to lift a grasped object. 20
- manipulation primitive a reactive controller, designed to perform a specific primitive action on a particular embodiment. 24
- micro-neurography a neurophysiological method employed by scientists to visualize and record the normal traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. 12, 14
- **Open source** refers to a computer program in which the source code is available to the general public for use and/or modification from its original design. 103
- **ROS** a middleware that provides a message passing framework among other features. Its developers community provide a set of open source software libraries and tools oriented for robot applications. 105, 202
- safety margin when grasping an object, the difference between the grip force and the slip force. The slip force is the minimum force applied before the object starts slipping. 18
- simple tactile reaction time time of reaction to a tactile stimulus in the absence of any cognitive demand of the subject. 17

GLOSSARY

- V1 a region of the functional model of the brain in charge of edge detection and global organisation of the scene. As information is further relayed to subsequent visual areas, it is coded as increasingly non-local frequency/phase signals. 161, 202
- V2 a region of the functional model of the brain sensitive to orientation, spatial frequency, and color. 162, 202
- V3 a ventral stream region of the functional model of the brain in charge of color extraction, shading and 2D orientation features. 162, 202
- V4 a ventral stream region of the functional model of the brain, it is devoted to use the information extracted by V3 and produce viewpoint invariant data of the objects. 162, 202
- YAML is a human friendly data serialization standard for all programming languages. 130, 202
- YARP a robot middleware that supports building a robot control system as a collection of programs communicating in a peer-to-peer way, with an extensible family of connection types (tcp, udp, multicast, local, MPI, mjpg-over-http, XML/RPC, tcpros, ...) that can be swapped in and out. It also supports flexible interfacing with hardware devices. 125, 202

Bibliography

- [Aarno et al., 2008] Aarno, D., Sommerfeld, J., Kragic, D., Pugeault, N., Kalkan, S., Wörgötter, F., Kraft, D., and Krüger, N. (2008). Early reactive grasping with second order 3d feature relations. In Lee, S., Suh, I., and Kim, M., editors, Recent Progress in Robotics: Viable Robotic Service to Human, volume 370 of Lecture Notes in Control and Information Sciences, pages 91–105. Springer Berlin Heidelberg.
- [AgX Dynamics, 2015] AgX Dynamics (2015). AgX Dynamics. http://www.algoryx.se/products/agx-dynamics/.
- [Aldoma et al., 2012] Aldoma, A., Tombari, F., Rusu, R. B., and Vincze, M. (2012). Our-cvfh-oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6dof pose estimation. In *Pattern Recognition*, pages 113–122. Springer Berlin Heidelberg.
- [Allen et al., 1997] Allen, P., Miller, A. T., Oh, P., and Leibowitz, B. (1997). Using tactile and visual sensing with a robotic hand. In *IEEE International Conference on Robotics and Automation*, pages 677–681, Albuquerque, New Mexico.
- [Allen and Roberts, 1989] Allen, P. and Roberts, K. (1989). Haptic object recognition using a multi-fingered dextrous hand. *Robotics and Automation*, 1989. Proceedings., 1989 IEEE International Conference on, pages 342–347 vol.1.
- [Antonelli et al., 2011] Antonelli, M., Chinellato, E., and del Pobil, A. P. (2011). Implicit mapping of the peripersonal space of a humanoid robot. In *Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), 2011 IEEE Symposium on.*
- [Antonelli et al., 2013] Antonelli, M., Duran, A., Chinellato, E., and del Pobil, A. P. (2013). Speeding-Up the Learning of Saccade Control, volume 8064 of Lecture Notes in Computer Science, pages 12–23. Springer Berlin Heidelberg.
- [Antonelli et al., 2015] Antonelli, M., Duran, A., Chinellato, E., and del Pobil, A. P. (2015). Adaptive saccade controller inspired by the primates cerebellum. In *IEEE International Conference on Robotics and Automation (ICRA)*.
- [Asfour et al., 2006] Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A.,

- Vahrenkamp, N., and Dillmann, R. (2006). Armar-iii: An integrated humanoid platform for sensory-motor control. In *Humanoid Robots*, 2006 6th IEEE-RAS International Conference on, pages 169–175.
- [Asfour et al., 2013] Asfour, T., Schill, J., Peters, H., Klas, C., Bucker, J., Sander, C., Schulz, S., Kargov, A., Werner, T., and Bartenbach, V. (2013). ARMAR-4: A 63 DOF torque controlled humanoid robot. In 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages 390–396. IEEE.
- [Asfour et al., 2008] Asfour, T., Welke, K., Azad, P., Ude, A., and Dillmann, R. (2008). The Karlsruhe Humanoid Head. In *Humanoids 2008 8th IEEE-RAS International Conference on Humanoid Robots*, pages 447–453. IEEE.
- [Azad et al., 2006] Azad, P., Asfour, T., and Dillmann, R. (2006). Combining appearance-based and model-based methods for real-time object recognition and 6D-localization. In *International Conference on Intelligent Robots and Systems*, Beijing, China.
- [Balasubramanian and Santos, 2014] Balasubramanian, R. and Santos, V. J. (2014). The Human Hand as an Inspiration for Robot Hand Development. Springer Tracts in Advanced Robotics 95, Springer International Publishing, Switzerland.
- [Bar et al., 2001] Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Mendola, J. D., Rosen, B. R., and Dale, A. M. (2001). Cortical mechanisms specific to explicit visual object recognition. *Neuron*, 29(2):529–35.
- [Bay et al., 2008] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision Image Understanding, 110:346–359.
- [Bekiroglu et al., 2011] Bekiroglu, Y., Laaksonen, J., Jorgensen, J., Kyrki, V., and Kragic, D. (2011). Assessing grasp stability based on learning and haptic data. *IEEE Transactions on Robotics*, 27(3):616–629.
- [Belter et al., 2014] Belter, D., Kopicki, M., Zurek, S., and Wyatt, J. (2014). Kinematically optimised predictions of object motion. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4422–4427. IEEE.
- [Bernabe et al., 2013] Bernabe, J., Felip., J., del Pobil, A. P., and Morales, A. (2013). Contact localization through robot and object motion from point clouds. In 13th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Atlanta, GA, USA. IEEE.
- [Billard et al., 2008] Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming by demonstration. In Siciliano, B. and Khatib, O., editors, *Springer Handbook of Robotics*, pages 1371–1394. Springer Berlin Heidelberg.
- [Blanz et al., 1999] Blanz, V., Tarr, M. J., and Bülthoff, H. H. (1999). What object

- attributes determine canonical views? Perception, 28(5):575–99.
- [Boeing and Bräunl, 2007] Boeing, A. and Bräunl, T. (2007). Evaluation of real-time physics simulation systems. In *Proceedings of the 5th international conference on Computer graphics and interactive techniques in Australia and Southeast Asia GRAPHITE '07*, page 281, New York, New York, USA. ACM Press.
- [Bohg et al., 2011] Bohg, J., Johnson-Roberson, M., Leon, B., Felip, J., Gratal, X., Bergstrom, N., Kragic, D., and Morales, A. (2011). Mind the gap robotic grasping under incomplete observation. In *Robotics and Automation (ICRA)*, 2011 IEEE International Conference on, pages 686–693.
- [Bradski and Kaehler, 2008] Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. "O'Reilly Media, Inc.".
- [Bülthoff et al., 1991] Bülthoff, H. H., Edelman, S. Y., and Tarr, M. J. (1991). How are three-dimensional objects represented in the brain? *Cerebral cortex (New York, N.Y.: 1991)*, 5(3):247–60.
- [Carpin et al., 2007] Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C. (2007). Usarsim: a robot simulator for research and education. In *Robotics and Automation*, *IEEE International Conference on*, pages 1400 –1405.
- [Castiello, 2005] Castiello, U. (2005). The neuroscience of grasping. *Nature reviews*. *Neuroscience*, 6(9):726–36.
- [Catalano et al., 2012] Catalano, M. G., Grioli, G., Serio, A., Farnioli, E., Piazza, C., and Bicchi, A. (2012). Adaptive synergies for a humanoid robot hand. In *Humanoid Robots (Humanoids)*, 2012 12th IEEE-RAS International Conference on, pages 7–14.
- [Chiaverini et al., 2008] Chiaverini, S., Oriolo, G., and Walker, I. (2008). Kinematically redundant manipulators. In Siciliano, B. and Khatib, O., editors, *Springer Handbook of Robotics*, pages 245–268. Springer Berlin Heidelberg.
- [Chinellato, 2008] Chinellato, E. (2008). Visual neuroscience of robotic grasping. PhD thesis, Universitat Jaume I, Departament d'Enginyeria i Ciència dels Computadors.
- [Chinellato et al., 2012] Chinellato, E., Antonelli, M., and del Pobil, A. P. (2012). A Pilot Study on Saccadic Adaptation Experiments with Robots, volume 7375 of Lecture Notes in Computer Science, pages 83–94. Springer Berlin Heidelberg.
- [Chinellato and Del Pobil, 2008] Chinellato, E. and Del Pobil, A. P. (2008). Neural coding in the dorsal visual stream. In *From Animals to Animats* 10, pages 230–239. Springer Berlin Heidelberg.
- [Chinellato and Del Pobil, 2009] Chinellato, E. and Del Pobil, A. P. (2009). Distance and orientation estimation of graspable objects in natural and artificial systems.

- Neurocomputing, 72(4):879-886.
- [Chinellato and del Pobil, 2016] Chinellato, E. and del Pobil, A. P. (2016). *The Visual Neuroscience of Robotic Grasping*. Springer International Publishing, Switzerland, cognitive edition.
- [Chinellato et al., 2011] Chinellato, E., Felip, J., Grzyb, B. J., Morales, A., and del Pobil, A. P. (2011). Hierarchical object recognition inspired by primate brain mechanisms. In *Computational Intelligence for Visual Intelligence (CIVI)*, 2011 IEEE Workshop on, pages 1–8.
- [Chinellato et al., 2008] Chinellato, E., Grzyb, B. J., and Del Pobil, A. P. (2008). Brain mechanisms for robotic object pose estimation. In Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on, pages 3268–3275. IEEE.
- [Ciocarlie and Allen, 2009] Ciocarlie, M. T. and Allen, P. K. (2009). Hand Posture Subspaces for Dexterous Robotic Grasping. *The International Journal of Robotics Research*, 28(7):851–867.
- [CM Labs, 2015] CM Labs (2015). Vortex Dynamics. http://www.cm-labs.com/robotics.
- [Coelho Jr. and Grupen, 1997] Coelho Jr., J. and Grupen, R. (1997). A Control Basis for Learning Multifingered Grasps. *Journal of Robotic Systems*, 14(7):545–557.
- [Cole and Abbs, 1988] Cole, K. J. and Abbs, J. H. (1988). Grip force adjustments evoked by load force perturbations of a grasped object. *J Neurophysiol*, 60(4):1513–1522.
- [Corke, 2011] Corke, P. (2011). Robotics, Vision and Control, volume 73 of Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg.
- [Coumans, nd] Coumans, E. (n.d.). Bullet, Game Physics Simulation. http://www.bulletphysics.org.
- [Cutkosky, 1989] Cutkosky, M. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. *IEEE Transactions on Robotics and Automation*, 5(3):269–279.
- [del Pobil and Serna, 1995] del Pobil, A. and Serna, M. (1995). Spatial representation and motion planning. In *Lecture Notes in Computer Science 1014, Springer-Verlag, Berlin*.
- [del Pobil et al., 2013] del Pobil, A. P., Duran, A. J., Antonelli, M., Felip, J., Morales, A., Prats, M., and Chinellato, E. (2013). Integration of visuomotor learning, cognitive grasping and sensor-based physical interaction in the uji humanoid torso. *Designing*

- Intelligent Robots: Reintegrating AI, pages pp. 6–11.
- [Diankov, 2010] Diankov, R. (2010). Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon University, Robotics Institute.
- [Drumwright et al., 2010] Drumwright, E., Hsu, J., Koenig, N., and Shell, D. (2010). Extending open dynamics engine for robotics simulation. In Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., and von Stryk, O., editors, Simulation, Modeling, and Programming for Autonomous Robots, volume 6472 of Lecture Notes in Computer Science, pages 38–50. Springer Berlin / Heidelberg.
- [E. Marchand, 2005] E. Marchand, F. Spindler, F. C. (2005). Visp for visual servoing: a generic software platform with a wide class of robot control skills. *IEEE Robotics and Automation Magazine, Special Issue on "Software Packages for Vision-Based Control of Motion"*, pages 12(4):40–52.
- [E. Rohmer, 2013] E. Rohmer, S. P. N. Singh, M. F. ("2013"). V-rep: a versatile and scalable robot simulation framework. In Proc. of The International Conference on Intelligent Robots and Systems (IROS).
- [Echeverria et al., 2012] Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., Lesire, C., and Stinckwich, S. (2012). Simulating complex robotic scenarios with morse. In *SIMPAR*, pages 197–208.
- [Edin et al., 1992] Edin, B. B., Westling, G., and Johansson, R. S. (1992). Independent control of human finger-tip forces at individual digits during precision lifting. *The Journal of physiology*, 450:547–64.
- [Elbrechter et al., 2012] Elbrechter, C., Haschke, R., and Ritter, H. (2012). Folding paper with anthropomorphic robot hands using real-time physics-based modeling. In *Humanoid Robots (Humanoids)*, 2012 12th IEEE-RAS International Conference on, pages 210–215.
- [Ellenberg et al., 2010] Ellenberg, R., Sherbert, R., Oh, P., Alspach, A., Gross, R., and Oh, J. (2010). A common interface for humanoid simulation and hardware. In *Humanoid Robots (Humanoids)*, 2010 10th IEEE-RAS International Conference on, pages 587 –592.
- [Erez et al., 2015] Erez, T., Tassa, Y., and Todorov, E. (2015). Simulation tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4397–4404. IEEE.
- [Feix et al., 2015] Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A. M., and Kragic, D. (2015). The GRASP Taxonomy of Human Grasp Types. *IEEE Transactions on Human-Machine Systems*, PP(99):1–12.

- [Felip et al., 2012] Felip, J., Bernabe, J., and Morales, A. (2012). Contact-based blind grasping of unknown objects. In 12th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, pages 396–401.
- [Felip et al., 2015] Felip, J., Durán, A. J., Antonelli, M., Morales, A., and del Pobil, A. P. (2015). Tombatossals: A humanoid torso for autonomous sensor-based task execution research. In 15th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Seoul, South Korea. IEEE.
- [Felip et al., 2013] Felip, J., Laaksonen, J., Morales, A., and Kyrki, V. (2013). Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks. *Robotics and Autonomous Systems*, 61(3):283 296.
- [Felip and Morales, 2009] Felip, J. and Morales, A. (2009). Robust sensor-based grasp primitive for a three-finger robot hand. In *Intelligent Robots and Systems*, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 1811–1816.
- [Felip and Morales, 2014] Felip, J. and Morales, A. (2014). Dual arm sensor-based controller for the cap unscrewing task. In 14th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Madrid, Spain. IEEE.
- [Felip et al., 2014] Felip, J., Morales, A., and Asfour, T. (2014). Multi-sensor and prediction fusion for contact detection and localization. In 14th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, Madrid, Spain. IEEE.
- [Fermin et al., 2000] Fermin, I., Okuno, H., Ishiguro, H., and Kitano, H. (2000). A framework for integrating sensory information in a humanoid robot. In *Intelligent Robots and Systems*, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, volume 3, pages 1748 –1753 vol.3.
- [Flanagan et al., 2006] Flanagan, J. R., Bowman, M. C., and Johansson, R. S. (2006). Control strategies in object manipulation tasks. *Current Opinion in Neurobiology*, 16(6):650 659. Motor systems / Neurobiology of behaviour.
- [Freeman, 1961] Freeman, H. (1961). On the Encoding of Arbitrary Geometric Configurations. *IEEE Transactions on Electronic Computers*, EC-10(2):260–268.
- [Gerkey et al., 2003] Gerkey, B., Vaughan, R., and Howard, A. (2003). Player/stage project: Tools for multi-robot and distributed sensor systems. In 11th International Conference on Advanced Robotics (ICAR 2003), pages 317–323, Coimbra, Portugal.
- [Gilbert et al., 1988] Gilbert, E., Johnson, D., and Keerthi, S. (1988). A fast procedure for computing the distance between complex objects in three-dimensional space. *IEEE Journal of Robotics and Automation*, 4(2):193–203.
- [Gilster et al., 2012] Gilster, R., Hesse, C., and Deubel, H. (2012). Contact points during multidigit grasping of geometric objects. *Experimental brain research*, 217(1):137—

51.

- [Goodale, 2004] Goodale, M. (2004). An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. *Current Opinion in Neuro-biology*, 14(2):203–211.
- [Goodale and Milner, 1992] Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and action. *Trends in neurosciences*, 15(1):20–5.
- [Goodwin et al., 1998] Goodwin, A. W., Jenmalm, P., and Johansson, R. S. (1998). Control of Grip Force When Tilting Objects: Effect of Curvature of Grasped Surfaces and Applied Tangential Torque. *J. Neurosci.*, 18(24):10724–10734.
- [Grill-Spector and Kanwisher, 2005] Grill-Spector, K. and Kanwisher, N. (2005). Visual recognition: as soon as you know it is there, you know what it is. *Psychological science*, 16(2):152–60.
- [Grill-Spector et al., 1999] Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., and Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. *Neuron*, 24(1):187–203.
- [Grill-Spector et al., 1998] Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., and Malach, R. (1998). A sequence of object-processing stages revealed by fMRI in the human occipital lobe. *Human brain mapping*, 6(4):316–28.
- [Grzyb et al., 2008] Grzyb, B. J., Chinellato, E., Morales, A., and del Pobil, A. P. (2008). Robust grasping of 3D objects with stereo vision and tactile feedback. In *International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR)*, pages 851 858, Coimbra, Portugal.
- [Grzyb et al., 2009] Grzyb, B. J., Chinellato, E., Morales, A., and del Pobil, A. P. (2009). A 3D grasping system based on multimodal visual and tactile processing. *Industrial Robot: An International Journal*, 36(4):365–369.
- [Hackett and Shah, 1990] Hackett, J. K. and Shah, M. (1990). Multi-sensor fusion: a perspective. In *Robotics and Automation*, 1990. Proceedings., 1990 IEEE International Conference on, pages 1324–1330 vol.2.
- [Häger-Ross and Johansson, 1996] Häger-Ross, C. and Johansson, R. (1996). Nondigital afferent input in reactive control of fingertip forces during precision grip. *Experimental Brain Research*, 110(1).
- [Hamlin et al., 1992] Hamlin, G., Kelley, R., and Tornero, J. (1992). Efficient distance calculation using the spherically-extended polytope (s-tope) model. In *IEEE International Conference on Robotics and Automation*, pages 2502 –2507 vol.3.
- [Harris and Stephens, 1988] Harris, C. and Stephens, M. (1988). A combined corner

- and edge detector. In Proc. Fourth Alvey Vision Conference, pages 147–151.
- [Hasegawa et al., 2003] Hasegawa, Y., Higashiura, M., and Fukuda, T. (2003). Object manipulation coordinating multiple primitive motions. In *Computational Intelligence in Robotics and Automation*, 2003. Proceedings. 2003 IEEE International Symposium on, volume 2, pages 741 746 vol.2.
- [Hebert et al., 2011] Hebert, P., Hudson, N., Ma, J., and Burdick, J. (2011). Fusion of stereo vision, force-torque, and joint sensors for estimation of in-hand object location. In *Robotics and Automation (ICRA)*, 2011 IEEE International Conference on, pages 5935–5941.
- [Hegdé and Van Essen, 2000] Hegdé, J. and Van Essen, D. C. (2000). Selectivity for complex shapes in primate visual area V2. The Journal of neuroscience: the official journal of the Society for Neuroscience, 20(5):RC61.
- [Hesse and Deubel, 2010] Hesse, C. and Deubel, H. (2010). Advance planning in sequential pick—and—place tasks. *Journal of Neurophysiology*, 104(1):508–516.
- [Hsiao et al., 2010] Hsiao, K., Chitta, S., Ciocarlie, M., and Jones, E. (2010). Contact-reactive grasping of objects with partial shape information. In *Intelligent Robots and Systems (IROS)*, 2010 IEEE/RSJ International Conference on, pages 1228–1235.
- [Hubel and Wiesel, 1977] Hubel, D. H. and Wiesel, T. N. (1977). Ferrier lecture: Functional architecture of macaque monkey visual cortex. *Proceedings of the Royal Society of London B: Biological Sciences*, 198(1130):1–59.
- [Huber and Grupen, 2002] Huber, M. and Grupen, R. (2002). Robust finger gaits from closed-loop controllers. *IEEE/RSJ International Conference on Robotics and Intelligent Systems*, 2:1578–1584 vol.2.
- [Ishikawa et al., 1996] Ishikawa, T., Sakane, S., Sato, T., and Tsukune, H. (1996). Estimation of contact position between a grasped object and the environment based on sensor fusion of vision and force. In *Multisensor Fusion and Integration for Intelligent Systems*, 1996. IEEE/SICE/RSJ International Conference on, pages 116–123.
- [Jackson, 2007] Jackson, J. (2007). Microsoft robotics studio: A technical introduction. Robotics Automation Magazine, IEEE, 14(4):82 –87.
- [James et al., 2001] James, K. H., Humphrey, G. K., and Goodale, M. A. (2001). Manipulating and recognizing virtual objects: where the action is. Canadian journal of experimental psychology = Revue canadienne de psychologie expérimentale, 55(2):111–20.
- [Janssen et al., 2000] Janssen, P., Vogels, R., and Orban, G. A. (2000). Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. *Science* (New York, N.Y.), 288(5473):2054–6.

- [Jenmalm and Johansson, 1997] Jenmalm, P. and Johansson, R. S. (1997). Visual and Somatosensory Information about Object Shape Control Manipulative Fingertip Forces. J. Neurosci., 17(11):4486–4499.
- [Jerez and Suero, nd] Jerez, J. and Suero, A. (n.d.). Newton Game Dynamics. http://newtondynamics.com/.
- [Johansson and Flanagan, 2008] Johansson, R. and Flanagan, J. (2008). Tactile sensory control of object manipulation in humans. ces.iisc.ernet.in, 6:67–86.
- [Johansson and Westling, 1991] Johansson, R. and Westling, G. (1991). Afferent Signals During Manipulative Tasks in Humans. *Information Processing in the Somatosensory Sysytem. Macmillan Press.*, pages pp 25–48.
- [Johansson and Flanagan, 2010] Johansson, R. S. and Flanagan, J. R. (2010). Sensorimotor Control of Manipulation. In *Encyclopedia of Neuroscience*, pages 583–594. Elsevier Ltd.
- [Johansson et al., 1992] Johansson, R. S., Häger, C., and Riso, R. (1992). Somatosensory control of precision grip during unpredictable pulling loads. *Experimental Brain Research*, 89(1):192–203.
- [Johansson and Vallbo, 1983] Johansson, R. S. and Vallbo, A. k. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. *Trends in Neurosciences*, 6:27–32.
- [Johansson and Westling, 1984] Johansson, R. S. and Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. *Experimental brain research*. *Experimentelle Hirnforschung*. *Experimentation cerebrale*, 56(3):550–564.
- [Johansson and Westling, 1987] Johansson, R. S. and Westling, G. (1987). Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental brain research. Experimentalle Hirnforschung. Experimentation cerebrale, 66(1):141–154.
- [Johansson et al., 2001] Johansson, R. S., Westling, G., Backstrom, A., and Flanagan, J. R. (2001). Eye-Hand Coordination in Object Manipulation. *J. Neurosci.*, 21(17):6917–6932.
- [Kanehiro et al., 2002] Kanehiro, F., Fujiwara, K., Kajita, S., Yokoi, K., Kaneko, K., and Hirukawa, H. (2002). Open architecture humanoid robotics platform. In *Proceedings of the IEEE International Conference on Robotics and Automation*, pages 24–30.
- [Kaneko et al., 2011] Kaneko, K., Kanehiro, F., Morisawa, M., Akachi, K., Miyamori, G., Hayashi, A., and Kanehira, N. (2011). Humanoid robot hrp-4 humanoid robotics

- platform with lightweight and slim body. In *Intelligent Robots and Systems (IROS)*, 2011 IEEE/RSJ International Conference on, pages 4400–4407.
- [Karayiannidis et al., 2014] Karayiannidis, Y., Smith, C., Vina, F., and Kragic, D. (2014). Online contact point estimation for uncalibrated tool use. In *Robotics and Automation (ICRA)*, 2014 IEEE International Conference on.
- [Kazemi et al., 2012] Kazemi, M., Valois, J.-S., Bagnell, J. A. D., and Pollard, N. (2012). Robust object grasping using force compliant motion primitives. Technical Report CMU-RI-TR-12-04, Robotics Institute, Pittsburgh, PA.
- [Kerpa et al., 2003] Kerpa, O., Weiss, K., and Worn, H. (2003). Development of a flexible tactile sensor system for a humanoid robot. In *Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453)*, volume 1, pages 1–6. IEEE.
- [Khatib, 1985] Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. In *Robotics and Automation*. *Proceedings*. 1985 IEEE International Conference on, volume 2, pages 500 505.
- [Koenig and Howard, 2004] Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In *IEEE International Conference on Intelligent Robots and Systems.*, volume 3, pages 2149–2154.
- [Kopicki et al., 2011] Kopicki, M., Zurek, S., Stolkin, R., Morwald, T., and Wyatt, J. (2011). Learning to predict how rigid objects behave under simple manipulation. In 2011 IEEE International Conference on Robotics and Automation, pages 5722–5729. IEEE.
- [Kourtzi and Kanwisher, 2001] Kourtzi, Z. and Kanwisher, N. (2001). Representation of perceived object shape by the human lateral occipital complex. *Science (New York, N.Y.)*, 293(5534):1506–9.
- [Krüger et al., 2011] Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter, F., Ude, A., Asfour, T., Kraft, D., Omrcen, D., Agostini, A., and Dillmann, R. (2011). Object-action complexes: Grounded abstractions of sensori-motor processes. *Robotics and Autonomus Systems*, 59:740 757.
- [Laaksonen et al., 2010] Laaksonen, J., Felip, J., Morales, A., and Kyrki, V. (2010). Embodiment independent manipulation through action abstraction. In *Robotics and Automation (ICRA)*, 2010 IEEE International Conference on, pages 2113–2118.
- [Lacheze et al., 2009] Lacheze, L., Guo, Y., Benosman, R., Gas, B., and Couverture, C. (2009). Audio/video fusion for objects recognition. In *Intelligent Robots and Systems*, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 652–657.
- [Laue and Hebbel, 2009] Laue, T. and Hebbel, M. (2009). Automatic parameter opti-

- mization for a dynamic robot simulation. In Iocchi, L., Matsubara, H., Weitzenfeld, A., and Zhou, C., editors, *RoboCup 2008: Robot Soccer World Cup XII*, volume 5399 of *Lecture Notes in Computer Science*, pages 121–132. Springer Berlin / Heidelberg.
- [Lele et al., 1954] Lele, P. P., Sinclair, D. C., and Weddell, G. (1954). The reaction time to touch. *The Journal of physiology*, 123(1):187–203.
- [Leon et al., 2012] Leon, B., Felip, J., Marti, H., and Morales, A. (2012). Simulation of robot dynamics for grasping and manipulation tasks. In 12th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS, pages 291–296.
- [León et al., 2010] León, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M., Morales, A., Asfour, T., Moisio, S., Bohg, J., Kuffner, J., and Dillmann, R. (2010). OpenGRASP: A toolkit for robot grasping simulation. In *Proceedings of the Second international conference on Simulation, modeling, and programming for autonomous robots.*
- [Lowe, 1999] Lowe, D. (1999). Object recognition from local scale-invariant features. In *IEEE International Conference on Computer Vision*, volume 2, pages 1150 –1157 vol.2.
- [Meeussen et al., 2006] Meeussen, W., Rutgeerts, J., Gadeyne, K., Bruyninckx, H., and Schutter, J. D. (2006). Particle Filters for Hybrid Event Sensor Fusion with 3D Vision and Force. In Multisensor Fusion and Integration for Intelligent Systems, 2006 IEEE International Conference on, pages 518–523.
- [Meier et al., 2011] Meier, M., Schopfer, M., Haschke, R., and Ritter, H. (2011). A Probabilistic Approach to Tactile Shape Reconstruction. *Robotics, IEEE Transactions on*, 27(3):630–635.
- [Metta et al., 2008] Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). The icub humanoid robot: An open platform for research in embodied cognition. In *Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems*, PerMIS '08, pages 50–56, New York, NY, USA. ACM.
- [Metzinger and Gallese, 2003] Metzinger, T. and Gallese, V. (2003). The emergence of a shared action ontology: building blocks for a theory. *Consciousness and cognition*, 12(4):549–71.
- [Michel, 2004a] Michel, O. (2004a). Cyberbotics ltd. webots tm: Professional mobile robot simulation. *Int. Journal of Advanced Robotic Systems*, 1:39–42.
- [Michel, 2004b] Michel, O. (2004b). Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems, 1(1):39–42.
- [Michelman and Allen, 1994] Michelman, P. and Allen, P. (1994). Forming complex dextrous manipulations from task primitives. In *Robotics and Automation*, 1994.

- Proceedings., 1994 IEEE International Conference on, pages 3383 –3388 vol.4.
- [Miller and Allen, 2004] Miller, A. and Allen, P. (2004). Graspit!: A versatile simulator for robotic grasping. *IEEE Robotics & Automation Magazine*, 11:110–112.
- [Moisio et al., 2012] Moisio, S., Leon, B., Korkealaakso, P., and Morales, A. (2012). Simulation of tactile sensors using soft contacts for robot grasping applications. In *Robotics and Automation (ICRA)*, 2012 IEEE International Conference on, pages 5037 –5043.
- [Morales et al., 2013] Morales, A., Prats, M., and Felip, J. (2013). Sensors and methods for the evaluation of grasping. In Carbone, G., editor, *Grasping in Robotics*, volume 10 of *Mechanisms and Machine Science*, pages 77–104. Springer London.
- [Morales et al., 2006] Morales, A., Sanz, P., del Pobil, A., and Fagg, A. (2006). Vision-based three-finger grasp synthesis constrained by hand geometry. *Robotics and Autonomus Systems*, 54(6):496–512.
- [Morrow and Khosla, 1997] Morrow, J. and Khosla, P. (1997). Manipulation task primitives for composing robot skills. In *Robotics and Automation*, 1997. Proceedings., 1997 IEEE International Conference on, volume 4, pages 3354 –3359 vol.4.
- [Mouri et al., 2007] Mouri, T., Kawasaki, H., and Ito, S. (2007). Unknown object grasping strategy imitating human grasping reflex for anthropomorphic robot hand. *Journal of Advanced Mechanical Design, Systems, and Manufacturing*, 1(1):1–11.
- [Murphy et al., 1993] Murphy, T., Lyons, D., and Hendriks, A. (1993). Stable grasping with a multi-fingered robot hand: A behavior-based approach. In *IEEE/RSJ International Conference on Robotics and Intelligent Systems*, volume 2, pages 867–874, Yokohama, Japan.
- [Nakanishi et al., 2012] Nakanishi, Y., Asano, Y., Kozuki, T., Mizoguchi, H., Motegi, Y., Osada, M., Shirai, T., Urata, J., Okada, K., and Inaba, M. (2012). Design concept of detail musculoskeletal humanoid 'Kenshiro' Toward a real human body musculoskeletal simulator. In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages 1–6. IEEE.
- [Nguyen and Trinkle, 2010] Nguyen, B. and Trinkle, J. (2010). dvc3d: a three dimensional physical simulation tool for rigid bodies with intermittent contact and coulomb friction. In First Joint International Conference on Multibody System Dynamics.
- [Nowak and Hermsdörfer, 2009] Nowak, D. A. and Hermsdörfer, J. (2009). Sensorimotor Control of Grasping: Physiology and Pathophysiology. Cambridge University Press, The Edinburgh Building, Cambridge CB2 8RU, UK.
- [Pastor et al., 2011] Pastor, P., Righetti, L., Kalakrishnan, M., and Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In *IEEE Inter*-

- national Conference on Intelligent Robots and Systems (IROS), pages 365–371.
- [Petersson et al., 1999] Petersson, L., Egerstedtt, M., and Christensen, H. (1999). A hybrid control architecture for mobile manipulation. In *Proc. IEEE/RSJ IROS'99*, pages 1285–1291.
- [Platt et al., 2002] Platt, R., Fagg, A. H., and Gruppen, R. (2002). Nullspace composition of control laws for grasping. In *IEEE International Conference on Robots and Intelligent Systems*, pages 1717–1723, Lausanne, Switzerland.
- [Prats et al., 2013] Prats, M., Pobil, A. P. D., and Sanz, P. J. (2013). Robot Physical Interaction through the combination of Vision, Tactile and Force Feedback Applications to Assistive Robotics, volume 84 of Springer Tracts in Advanced Robotics. Springer.
- [Prats et al., 2010] Prats, M., Sanz, P., and del Pobil, A. (2010). A framework for compliant physical interaction. *Autonomous Robots*, 28:89–111. 10.1007/s10514-009-9145-8.
- [Rombokas et al., 2012] Rombokas, E., Brook, P., Smith, J., and Matsuoka, Y. (2012). Biologically inspired grasp planning using only orthogonal approach angles. In Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS EMBS International Conference on, pages 1656–1661.
- [Rusu and Cousins, 2011] Rusu, R. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In *Robotics and Automation (ICRA)*, 2011 IEEE International Conference on, pages 1–4.
- [Sakagami and Watanabe, 2002] Sakagami, Y. and Watanabe, R. (2002). The intelligent ASIMO: System overview and integration. *Intelligent Robots* . . . , 3(October).
- [Sakata et al., 1998] Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y., and Tsutsui, K. (1998). Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, 353(1373):1363–73.
- [Santello et al., 1998] Santello, M., Flanders, M., and Soechting, J. F. (1998). Postural hand synergies for tool use. *The Journal of Neuroscience*, 18(23):10105–10115.
- [Schaal, 2006] Schaal, S. (2006). Dynamic movement primitives. a framework for motor control in humans and humanoid robotics. *Adaptive Motion of Animals and Machines*, pages 261–280.
- [Schaal et al., 2005] Schaal, S., Peters, J., Nakanishi, J., and Ijspeert, A. (2005). Learning movement primitives. In Dario, P. and Chatila, R., editors, *Robotics Research*, volume 15 of *Springer Tracts in Advanced Robotics*, pages 561–572. Springer Berlin / Heidelberg.

- [Schettino et al., 2003] Schettino, L. F., Adamovich, S. V., and Poizner, H. (2003). Effects of object shape and visual feedback on hand configuration during grasping. Experimental brain research, 151(2):158–66.
- [Sereno et al., 1995] Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. *Science* (New York, N.Y.), 268(5212):889–93.
- [Shikata et al., 1996] Shikata, E., Tanaka, Y., Nakamura, H., Taira, M., and Sakata, H. (1996). Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. *Neuroreport*, 7(14):2389–94.
- [Shmuelof and Zohary, 2005] Shmuelof, L. and Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. *Neuron*, 47(3):457–70.
- [Singhal et al., 2007] Singhal, A., Culham, J. C., Chinellato, E., and Goodale, M. A. (2007). Dual-task interference is greater in delayed grasping than in visually guided grasping. *Journal of Vision*, 7(5):5.
- [Smith, 2007] Smith, R. (2007). Open Dynamics Engine ODE. http://www.ode.org.
- [Smits, 2015] Smits, R. (2015). KDL: Kinematics and Dynamics Library. http://www.orocos.org/kdl.
- [Speeter, 1991] Speeter, T. (1991). Primitive based control of the utah/mit dextrous hand. In Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on, pages 866 –877 vol.1.
- [Sucan and Kavraki, 2012] Sucan, I. and Kavraki, L. E. (2012). A Sampling-Based Tree Planner for Systems With Complex Dynamics. *IEEE Transactions on Robotics*, 28(1):116–131.
- [Sucan and Chitta, 2015] Sucan, I. A. and Chitta, S. (2015). Moveit! http://moveit.ros.org/.
- [Sugio et al., 1999] Sugio, T., Inui, T., Matsuo, K., Matsuzawa, M., Glover, G. H., and Nakai, T. (1999). The role of the posterior parietal cortex in human object recognition: a functional magnetic resonance imaging study. *Neuroscience letters*, 276(1):45–8.
- [Tellez et al., 2008] Tellez, R., Ferro, F., Garcia, S., Gomez, E., Jorge, E., Mora, D., Pinyol, D., Oliver, J., Torres, O., Velazquez, J., and Faconti, D. (2008). Reem-B: An autonomous lightweight human-size humanoid robot. In *Humanoids 2008 8th IEEE-RAS International Conference on Humanoid Robots*, pages 462–468. IEEE.

- [Tenorth et al., 2012] Tenorth, M., Perzylo, A., Lafrenz, R., and Beetz, M. (2012). The roboearth language: Representing and exchanging knowledge about actions, objects, and environments. In *IEEE International Conference on Robotics and Automation*, Saint Paul, MN, USA.
- [Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). *Probabilistic Robotics* (Intelligent Robotics and Autonomous Agents). The MIT Press.
- [Todorov et al., 2012] Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-based control. In *Intelligent Robots and Systems (IROS)*, 2012 IEEE/RSJ International Conference on, pages 5026–5033.
- [Tornero et al., 1991] Tornero, J., Hamlin, J., and Kelley, R. (1991). Spherical-object representation and fast distance computation for robotic applications. In *International Conference on Robotics and Automation*, pages 1602–1608 vol.2.
- [Ullman, 1996] Ullman, S. (1996). High-level Vision. Object recognition and visual cognition. The MIT Press.
- [Vahrenkamp et al., 2012] Vahrenkamp, N., Kröhnert, M., Ulbrich, S., Asfour, T., Metta, G., Dillmann, R., and Sandini, G. (2012). Simox: A robotics toolbox for simulation, motion and grasp planning. In *International Conference on Intelligent Autonomous Systems (IAS)*.
- [van der Heijden et al., 2004] van der Heijden, F., Duin, R. P. W., de Ridder, D., and Tax, D. M. J. (2004). Classification, Parameter Estimation and State Estimation: An Engineering Approach Using Matlab. Wiley, New York.
- [Waldron and Schmiedeler, 2008] Waldron, K. and Schmiedeler, J. (2008). Kinematics. In Siciliano, B. and Khatib, O., editors, *Springer Handbook of Robotics*, pages 9–33. Springer Berlin Heidelberg.
- [Weitnauer et al., 2010] Weitnauer, E., Haschke, R., and Ritter, H. (2010). Evaluating a physics engine as an ingredient for physical reasoning. In *Proceedings of the Second international conference on Simulation, modeling, and programming for autonomous robots*, pages 144–155.
- [Yang et al., 2015] Yang, Y., Aloimonos, Y., Fermuller, C., and Aksoy, E. E. (2015). Learning the Semantics of Manipulation Action. The 53rd Annual Meeting of the Association for Computational Linquistics (ACL) 1 (2015) 676-686.
- [Zhang et al., 2010] Zhang, L., Betz, J., and Trinkle, J. (2010). Comparison of simulated and experimental grasping actions in the plane. In *First Joint International Conference on Multibody System Dynamics*.
- [Zhang, 1994] Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surface. *International Journal of Computer Vision*, 13(2):119–152.

CONTACT DRIVEN ROBOTIC MANIPULATION